Если скорость машины меняется — а это всегда происходит в реальной жизненной ситуации, — то за один час вы проедете больше или меньше 20 км, в зависимости от того, как часто ускоряли или замедляли ход машины. Как же в таком случае вычислить точную скорость в определенный момент времени?
Вот как это сделал Ньютон. Он предложил сначала вычислить (в случае ускоряющегося движения) примерную скорость между двумя точками, заменив участок кривой между ними прямым отрезком. Как видно из рис. 6–5, скорость опять определяется соотношением между {d2-d1) и (t2-t1). Это не будет точным значением скорости ни в одной из двух точек, но если уменьшить расстояние между ними в достаточной степени, мы получим хорошее приближение.
Затем Ньютон предложил: давайте стягивать треугольник, образованный кривой и разностями координат, сдвигая две точки на кривой все ближе и ближе друг к другу. Пока мы делаем это, отрезок прямой между двумя точками будет все ближе и ближе подходить к кривой, а погрешность в вычислении скорости между двумя точками будет все меньше и меньше. В конце концов когда мы достигаем предела отношения бесконечно малых разниц — это критический шаг! — две точки на кривой сливаются в одну, а мы получаем точное значение скорости в этой точке. Геометрически прямая, соответствующая этой скорости, расположится по касательной к кривой.
Стянуть этот треугольник — в математическом смысле — к нулю и вычислить соотношение между двумя бесконечно малыми разностями — задача отнюдь не тривиальная. Точное определение предела бесконечно малого — самый трудный момент всей процедуры исчисления.
Рис. 6–4.
Чтобы вычислить постоянную скорость, нужно поделить
разность между координатами расстояния (d2-d1)
на разность между координатами времени (t2-t1)
Рис. 6–5.
Вычисление приблизительного значения скорости между двумя точками в случае ускоряющегося движения
На математическом языке бесконечно малая разность называется дифференциалом; поэтому и исчисление, изобретенное Ньютоном и Лейбницем, известно как дифференциальное. Уравнения, в которые входят дифференциалы, называются дифференциальными уравнениями.
Изобретение дифференциального исчисления явилось для науки гигантским шагом вперед. Впервые в человеческой истории понятию бесконечного, волновавшему философов и поэтов с незапамятных времен, было дано точное математическое определение; оно открыло необозримые новые возможности для анализа естественных феноменов.
Мощь нового аналитического инструмента можно проиллюстрировать на знаменитом парадоксе Зенона, представителя ранней элейской школы греческой философии. Согласно Зенону, великий атлет Ахилл никогда не сможет догнать черепаху в забеге, если черепаха стартует первой, поскольку, как только Ахилл наверстает начальное отставание, черепаха за это время продвинется еще дальше, а когда Ахилл пробежит и это расстояние, у черепахи опять окажется фора, и так до бесконечности. И хотя отставание атлета продолжает сокращаться, оно никогда не исчезнет. В каждый данный момент черепаха всегда будет впереди. Поэтому, как заключает Зенон, даже самый быстрый бегун никогда не сможет состязаться с медлительной черепахой.
Греческие философы и их последователи веками спорили по поводу этого парадокса, но никак не могли разрешить его, поскольку точное определение бесконечно малого ускользало от них. Упущение в аргументации Зенона кроется в том, что, даже если Ахиллу придется сделать бесконечное число шагов, чтобы догнать черепаху, это не займет бесконечного времени. Применив аппарат исчисления Ньютона, можно легко показать, что движущееся тело промчится сквозь бесконечное число бесконечно малых интервалов за конечное время.
В XVII веке Исаак Ньютон использовал свое исчисление для описания любых возможных движений твердых тел с помощью набора дифференциальных уравнений, которые с тех пор стали известны как ньютоновы уравнения движения. Этот подвиг Эйнштейн восславил как «возможно, величайшее достижение мысли, которое когда-либо посчастливилось осуществить одному человеку»2.
Лицом к лицу со сложностью