В этот момент возникает поразительный упорядоченный паттерн шестиугольных ячеек («медовых сот»), в которых горячая жидкость поднимается вверх по центру ячеек, в то время как более холодная опускается вниз вдоль стенок ячеек (рис. 5–1).
Рис. 5–1.
Паттерн шестиугольных бенаровских ячеек в цилиндрическом контейнере, вид сверху. Диаметр контейнера равен приблизительно 10 см, глубина жидкости около 0,5 см. Пример взят из Berge (1981)
Подробный анализ Пригожиным бенаровских ячеек показал, что, удаляясь от состояния равновесия (т. е. от состояния с равномерной температурой по всему объему жидкости), система в итоге достигает критической точки неустойчивости, в которой возникает упорядоченный гексагональный паттерн23.
Неустойчивость в опыте Бенара представляет собой яркий пример спонтанной самоорганизации. Неравновесное состояние, поддерживаемое непрерывным потоком тепла через систему, генерирует сложный пространственный паттерн, в котором миллионы молекул движутся последовательно, формируя шестиугольные конвекционные ячейки. Более того, бенаровские ячейки не ограничены лабораторными экспериментами, они встречаются и в природе при самых разнообразных условиях. Например, поток теплого воздуха, идущий от поверхности земли вверх, может образовывать завихрения в виде шестиугольников, которые оставляют свои отпечатки на песчаных барханах в пустыне и в снежных полях Арктики24.
Еще один впечатляющий пример самоорганизации, подробно изученный Пригожиным и его коллегами в Брюсселе, представляют так называемые «химические часы». Это реакции, далекие от химического равновесия, в которых наблюдаются поразительные периодические колебания25. Например, если в реакции участвует два типа молекул, «красные» и «синие», то в определенный момент весь раствор приобретает синий цвет; потом он резко меняет цвет на красный, затем снова синеет, и далее это происходит с регулярными интервалами. Различные экспериментальные условия также могут вызывать волны химической активности (рис. 5–2).
Рис. 5–2.
Волноподобная химическая активность в так называемой реакции Белоусова-Жаботинского. Взято из Prigogine (1980)
Чтобы мгновенно менять цвет, химическая система должна вести себя как целое и проявлять высокую степень упорядоченности через синхронное поведение миллиардов молекул. Пригожий и его коллеги обнаружили, что, как и при бернаровской конвекции, это синхронное поведение возникает спонтанно в далеких от равновесия критических точках неустойчивости.
В 60-е годы Пригожий разработал новую нелинейную термодинамику для описания феномена самоорганизации в далеких от равновесия открытых системах. «Классическая термодинамика, — поясняет он, — приводит к понятию системы в состоянии равновесия, такой, как, например, кристалл. Ячейки Бернара — это тоже структуры, но совершенно другой природы. Вот почему мы ввели понятие диссипативных структур — в таких ситуациях оно подчеркивает тесную связь, парадоксальную на первый взгляд, между структурой и порядком, с одной стороны, и диссипацией (рассеянием)… с другой»26. В классической термодинамике рассеяние энергии при передаче тепла, при трении и т. п. всегда связывалось с потерями. Пригожинская концепция диссипативной структуры внесла радикальные перемены в этот подход, показав, что в открытых системах рассеяние энергии становится источником порядка.
В 1967 году Пригожин впервые представил свою концепцию диссипативных структур в лекции на Нобелевском симпозиуме в Стокгольме27, а четыре года спустя он опубликовал первую формулировку полной теории вместе со своим коллегой, Полом Глансдорфом28. По теории Пригожина, диссипативные структуры не только поддерживают себя в далеком от равновесия устойчивом состоянии, но могут даже развиваться. Когда поток энергии и материи, пронизывающий их, нарастает, они могут пройти через новые состояния неустойчивости и трансформироваться в новые структуры повышенной сложности.
Выполненный Пригожиным подробный анализ этого поразительного феномена показал, что если диссипативные структуры получают энергию извне, то неустойчивость и скачки новых форм организации являются результатом флюктуации, усиленных петлями положительной обратной связи. Таким образом, усиливающая обратная связь «вразнос», которая всегда считалась разрушительной в кибернетике, оказывается источником нового порядка и сложности в теории диссипативных структур.