Теория Хакена с очевидностью показывает, что, хотя лазеру требуется энергетическая подкачка извне, чтобы он оставался в состоянии, далеком от равновесия, координация эмиссий осуществляется самим лазерным светом: это процесс самоорганизации. Таким образом, Хакен независимо пришел к точному описанию феномена самоорганизации, подобного тому, который Пригожин назвал бы диссипативной структурой.
Предсказания лазерной теории были подтверждены с большой точностью, и, благодаря новаторской работе Германа Хакена, лазер стал важным инструментом в изучении самоорганизации. На торжественном симпозиуме, посвященном шестидесятилетию Хакена, его сотрудник Роберт Грэм весьма выразительно оценил его работу:
Великий вклад Хакена в науку состоит в том, что он понял, что лазеры являются не только исключительно важным технологическим инструментом, но и сами по себе представляют интереснейшие физические системы, что может научить нас многому… Лазеры занимают очень важную позицию между квантовым и классическим миром, и теория Хакена объясняет нам, как могут быть связаны между собой эти миры… Лазер можно рассматривать как перекресток между квантовой и классической физикой, между равновесными и неравновесными явлениями, между фазовыми переходами и самоорганизацией, а также между регулярной и хаотической динамикой. В то же время, это система, которую мы понимаем как на микроскопическом квантовомеханическом уровне, так и на макроскопическом классическом. Это устойчивая основа для изучения общих концепций неравновесной физики34.
Гиперциклы
В то время как Пригожин и Хакен изучали феномен самоорганизации, исследуя физические и химические системы, которые проходят через точки неустойчивости и образуют новые формы порядка, биохимик Манфред Эйген применил ту же концепцию, пытаясь пролить свет на тайну происхождения жизни. Согласно традиционной версии теории Дарвина, живые организмы выделились из «молекулярного хаоса» случайно, в процессе беспорядочных мутаций и естественного отбора. Тем не менее многие ученые отмечали, что вероятность такого возникновения даже простейших клеток за обозримый период развития Земли фактически равна нулю.
Манфред Эйген, нобелевский лауреат и директор Института физической химии имени Макса Планка в Гёттингене, в начале 70-х предположил, что возникновение жизни на Земле стало возможным благодаря процессу нарастающей организации в далекой от равновесия химической системе, с образованием гиперциклов многочисленных петель обратной связи. Фактически Эйген постулировал добиологическую фазу эволюции, в ходе которой в молекулярном мире происходят процессы отбора, выражающие «свойства вещества в особых системах реакций»35, и ввел понятие молекулярной самоорганизации для описания этих добиологических эволюционных процессов36.
Особые системы реакций, которые изучал Эйген, известны как каталитические циклы. Катализатор служит веществом, которое повышает скорость химической реакции, но само при этом не изменяется. Каталитические реакции — важнейшие процессы в химии жизни. Наиболее распространенными и эффективными катализаторами являются ферменты, или энзимы, — существенные компоненты клеток, способствующие жизненно важным метаболическим процессам.
Когда Эйген и его коллеги в 60-е годы изучали каталитические реакции с участием ферментов, они заметили, что в далеких от равновесия биохимических системах, т. е. системах, пронизанных энергетическими потоками, различные каталитические реакции объединяются, формируя сложные сети, в которых могут содержаться и замкнутые циклы. На рис. 5–3 приведен пример такой каталитической сети, когда 15 ферментов ускоряют формирование друг друга таким образом, что образуется замкнутый, или каталитический, цикл.
Эти каталитические циклы лежат в основе самоорганизующихся химических систем, подобных химическим часам, исследованным Пригожиным; кроме того, они играют существенную роль в метаболических функциях живых организмов. Они замечательным образом устойчивы и выдерживают широкий диапазон условий38. Эйген установил, что в условиях достаточного времени и непрерывного потока энергии каталитические циклы обнаруживают тенденцию к сцеплению, формируя замкнутые петли, в которых ферменты, созданные в одном цикле, служат катализаторами в последующем цикле. Он ввел термин «гиперциклы» для тех петель, в которых каждый узел представляет собой каталитический цикл.