Считается, что впервые цикл «кругов Луне» обнаружил «древне»-греческий астроном Метон в якобы 432 году до нашей эры [704], с. 461. Поэтому круг Луне называется также «метоновым циклом». Отметим, что датировка открытия Метона 432 годом до нашей эры – то есть якобы за несколько сотен лет до появления того самого юлианского календаря, в котором метонов цикл осуществляется, – является одним из абсурдов скалигеровской хронологии. Мы к этому вопросу еще вернемся.
Перейдем к КРУГУ СОЛНЦУ. Как и круг Луне, это – тоже цикл юлианского календаря. Однако он не связан напрямую с астрономическими явлениями. В частности, несмотря на свое название, он не связан с наблюдениями Солнца. Название «круг Солнцу» – условное, поскольку цикл этот является чисто календарным. Он представляет собой 28-летний цикл повторения дней недели в числах юлианского календаря. Поясним, что дни недели могут повториться в числах календаря и через промежуток меньший, чем 28 лет. В этом легко убедиться, просмотрев старые календари на несколько лет назад. Как правило, можно подобрать календарь и менее чем 28-летней давности, который совпадет с календарем текущего года. Однако наименьшее число лет, через которые будет повторяться календарь ЛЮБОГО юлианского года, это – 28.
«Кругом Солнцу» некоторого произвольно взятого года называется его номер в этом 2 8-летнем пасхальном цикле – от 1 до 28. Каждому такому номеру, в свою очередь, соответствует вполне определенное расписание дней недели по числам календарных месяцев. Как и в случае с «кругом Луне», «круг Солнцу» прямо указывается пасхальными таблицами для каждого года из текущего 532-летнего индиктиона. Для других годов его легко подсчитать, пользуясь тем, что он повторяется через каждые 28 лет.
Круг Солнцу используется в пасхальных вычислениях, чтобы узнать – является ли данное календарное число воскресеньем в данном году. Это важно для определения сроков Пасхи. Напомним, что христианская Пасха может быть только в воскресенье. Таково одно из правил, определяющих Пасху, см. ниже.
Нетрудно понять, почему цикл «кругов Солнцу» составляет именно 28 лет. Дело в том, что простой год в юлианском календаре содержит 52 недели и один день сверх того, а високосный – 52 недели и 2 дополнительных дня. Таким образом, сдвиг дней недели по числам календаря равен одному дню по прошествии простого года и двум – по прошествии високосного года. Поэтому для того, чтобы календарь заведомо повторился, нужно, чтобы прошло кратное семи число простых лет и кратное семи число високосных лет. (Здесь семь – это число дней в неделе. Через семь дней день недели повторяется.)
Далее, так как високосный год является каждым четвертым годом в юлианском календаре, то цикл повторения простых и високосных лет равен 4. А именно – каждое 4-летие содержит ровно 3 простых и 1 високосный год. Следовательно, наименьшее число лет, в котором количества как простых, так и високосных лет кратны семи, равно 7 х 4 = 28 лет. В любом 28-летии будет ровно 7 х 3 = 21 простой год и 7 х 1 = = 7 високосных. А вот в меньшем количестве лет может оказаться, что либо число простых, либо число високосных лет не кратно 7. Либо и то и другое. Поэтому 28 – это и есть величина наименьшего периода повторения дней недели в числах юлианского календаря.
«Круг Луне» и «круг Солнцу» можно найти по следующему простому правилу. Надо взять номер года по византийской эре «от Адама» и определить его остатки от деления на 19 и на 28. Это и будут искомые «круг Луне» и «круг Солнцу» данного года. Дело в том, что в первый год от Адама по византийской эре «круг Луне» и «круг Солнцу», согласно церковно-славянской пасхалии [701], были равны единице. См. также [393], с. 78. На первый взгляд может показаться, что это – следствие того, что оба цикла были определены на основе уже существовавшего к тому времени летосчисления «от Адама». Однако это не так. Наоборот – начало византийской эры «от Адама» было, скорее всего, само ВЫЧИСЛЕНО, исходя из условия, чтобы «круг Солнцу», «круг Луне», а также «индикт» (о котором ниже) обратились одновременно в единицу. Мнение о том, что «эра от Адама» и другие эры «от сотворения мира» появились именно благодаря подобным вычислениям, уже высказывалось специалистами [393], с. 239. К данному вопросу мы еще вернемся в следующих разделах.