4. Переход к оптимизации по следующему параметру производится после того, как найдено наилучшее решение по первому. Вновь производится одномерная оптимизация, при этом значения всех других параметров остаются зафиксированными на значениях узла, найденного в ходе оптимизации первого параметра.
5. Закончив один оптимизационный цикл (заключающийся в одномерной оптимизации каждого из параметров), возобновляем процедуру, начиная с первого по списку параметра. Процесс останавливается после того, как очередной оптимизационный цикл не находит решение, превосходящее по значению целевой функции предыдущее.
Рассмотрим практическое применение данного алгоритма на примере оптимизации базовой дельта-нейтральной стратегии по целевой функции «прибыль» (оптимизационное пространство показано на рис. 2.2.2). Для того чтобы представить процедуру поиска оптимального решения визуально, ограничим области допустимых значений параметров диапазонами 2–80 для параметра «число дней до экспирации» и 100–300 для параметра «период истории для расчета HV». Выполнение алгоритма происходит следующим образом:
1. Выбираем стартовую точку. Предположим, что случайным образом был выбран узел с координатами 60 и 130. На рис. 2.7.1 данный узел отмечен номером 1.
2. Зафиксировав параметр «число дней до экспирации» на значении 60, вычисляем целевую функцию для всех значений параметра «период истории для расчета HV» (одномерная оптимизация методом полного перебора).
3. Определяем узел с максимальным значением целевой функции. В данном примере таким узлом является узел с координатами 30 и 250 (точка номер 2 на рис. 2.7.1).
4. Фиксируем значение параметра «период истории для расчета HV» на значении 250 и вычисляем целевую функцию для всех значений параметра «число дней до экспирации». Максимальное значение функции оказалось в узле с координатами 40 и 250 (третья точка).
5. Фиксируем число дней до экспирации на значении 40 и вычисляем целевую функцию для всех значений периода истории. Попадаем на следующий узел с координатами 40 и 170 (четвертая точка).
6. Фиксируем период истории на значении 170 и вычисляем целевую функцию для всех дней до экспирации. Попадаем на пятую точку с координатами 30 и 170.
7. Фиксируем число дней до экспирации на 30 и вычисляем целевую функцию для всех значений периода истории. Попадаем на шестую точку с координатами 30 и 105.
8. Фиксируем период истории на значении 105 и вычисляем целевую функцию для всех дней до экспирации. Выясняем, что максимум целевой функции приходится на исходный узел (точка номер 6). Это означает, что дальнейшего улучшения не происходит и, следовательно, алгоритм останавливается. Оптимальным решением является последний узел (номер 6).
Простой по своей логике и легко реализуемый, метод покоординатного подъема, однако, не очень эффективен. Представим себе ситуацию, когда двумерная оптимизационная поверхность имеет оптимальную область в форме узкого «горного хребта», протянувшегося с «северо-запада» на «юго-восток». Если высота хребта повышается в «юго-восточном» направлении, то, применив этот алгоритм, мы выйдем на гребень хребта и не сможем найти улучшения, поскольку для этого надо будет менять два параметра одновременно. Это сильно ограничивает применимость данного метода.
Этот метод был разработан с целью уменьшить вероятность возникновения ситуаций, в которых метод покоординатного подъема останавливается преждевременно, не найдя удовлетворительного оптимального решения. Он включает в себя последовательное применение двух процедур – исследующего поиска и поиска по образцу, повторяемых до нахождения неулучшаемого оптимума. По сравнению с методом покоординатного подъема применение метода Хука−Дживса существенно сокращает вероятность остановки алгоритма, не достигнув экстремума. Алгоритм метода Хука−Дживса имеет следующий вид.
1. Выбирается стартовый узел. Начиная с этого узла, выполняется процедура исследующего поиска. Данная процедура заключается в исполнении нескольких циклов описанного выше метода покоординатного подъема. Один цикл исследующего поиска состоит из