Опционы: Разработка, оптимизация и тестирование торговых стратегий - страница 63

Шрифт
Интервал

стр.

1. Выбирается стартовый узел, начиная с которого выполняется цикл исследующего поиска (то есть два цикла покоординатного подъема).

2. Определяется направление от стартового узла на найденный узел и выполняется процедура поиска в этом направлении (поиск по образцу).

3. Найдя наилучший узел в этом направлении, строится направление перпендикулярное к ранее найденному направлению.

4. Производится поиск в перпендикулярном направлении и находится узел с наибольшим значением целевой функции.

5. Начиная с узла, найденного на перпендикулярном направлении, повторяем все процедуры (исследующий поиск, поиск по образцу, перпендикулярный поиск).


Рассмотрим практическое применение метода Розенброка на примере базовой дельта-нейтральной стратегии. Как и в предыдущих примерах, ограничим области допустимых значений параметров: 2–80 для параметра «число дней до экспирации» и 100–300 для параметра «период истории для расчета HV». Для выполнения алгоритма следует исполнить следующие процедуры:

1. Случайным образом выбираем стартовую точку. Предположим, что был выбран узел с координатами 70 и 180. Данный узел отмечен номером 1 на рис. 2.7.3.

2. Начинаем процедуру исследующего поиска, заключающуюся в исполнении двух циклов покоординатного подъема. Фиксируем параметр «число дней до экспирации» на значении 70 и вычисляем целевую функцию для всех значений параметра «период истории для расчета HV». Узел с максимальным значением целевой функции имеет координаты 70 и 240 (точка номер 2 на рис. 2.7.3).

3. Зафиксировав параметр «период истории для расчета HV» на значении 240, вычисляем целевую функцию для всех значений параметра «число дней до экспирации». Максимум функции приходится на узел с координатами 36 и 240 (третья точка).

4. Выполняем процедуру поиска по образцу. Определяем направление от стартового узла (номер 1) на узел 3 (правая верхняя стрелка на рис. 2.7.3) и вычисляем значение целевой функции во всех узлах, пересекаемых данным направлением.

5. Находим узел с максимальным значением целевой функции (четвертая точка с координатами 40 и 230) и строим направление, перпендикулярное к ранее найденному направлению.

6. Производим поиск в новом (перпендикулярном) направлении и находим узел с наибольшим значением целевой функции (пятая точка с координатами 34 и 215).

7. Начиная с этого узла, повторяем цикл исследующего поиска методом покоординатного подъема. Фиксируем значение параметра «число дней до экспирации» на значении 34 и вычисляем целевую функцию для всех значений параметра «период истории для расчета HV». Максимальное значение функции оказалось в узле с координатами 34 и 140 (шестая точка).

8. Фиксируем период истории на значении 140 и вычисляем целевую функцию для всех дней до экспирации. Максимум функции приходится на узел с координатами 30 и 140 (седьмая точка).

9. Повторяем процедуру поиска по образцу. Определяем направление от пятой точки на седьмую точку (левая нижняя стрелка на рис. 2.7.3) и вычисляем значение целевой функции во всех узлах, пересекаемых данным направлением. Оказывается, что ни в одном из узлов указанного направления значение целевой функции не превосходит значение седьмой точки.

10. Строим направление, перпендикулярное направлению, указанному левой стрелкой (не показано на рисунке), и производим поиск вдоль этого направления. Оказывается, что и в этом направлении не находится ни одного узла, превосходящего по величине целевой функции седьмой узел.

11. Повторяем цикл исследующего поиска. Фиксируем значение параметра «число дней до экспирации» на значении 30 и вычисляем целевую функцию для всех значений параметра «период истории для расчета HV». Максимальное значение функции оказывается в узле с координатами 30 и 105 (восьмая точка).

12. Как мы уже видели в предыдущих примерах (метод Хука−Дживса), дальнейшего улучшения не происходит и, следовательно, алгоритм останавливается. Оптимальным решением является узел номер 8.



Метод Розенброка представляет собой усовершенствование методов покоординатного подъема и Хука−Дживса. В некоторых случаях он может заметно улучшить эффективность поиска, однако это происходит далеко не всегда. В определенных условиях, зависящих в основном от формы и структуры оптимизационного пространства, эффективность поиска может не только не повыситься, но даже снизиться.


стр.

Похожие книги