Для того чтобы выбор оптимального решения основывался не только на высотной отметке, но и учитывал робастность, необходимо количественно оценить рельеф окружающей области и меру его изломанности. В случае многомерного пространства эта задача очень сложна и требует привлечения методов топологии. Однако для двумерного пространства можно предложить несколько относительно простых в реализации решений.
2.5.1. Усреднение соседних ячеек
Этот метод оценки робастности аналогичен построению скользящих средних. При построении скользящего среднего усреднение целевой функции (обычно это цена или объем торгов) производится по мере движения во времени, а само усреднение используется для описания временной динамики и определения ценовых или каких-либо других трендов. Для изучения рельефа оптимизационной поверхности и оценки робастности оптимального решения, усреднение целевой функции производится по мере движения в оптимизационном пространстве. В каждом узле пространства значение целевой функции заменяется средним значением целевой функции соседних узлов, окружающих данный узел. Таким образом оригинальное оптимизационное пространство трансформируется в новое пространство, которое используется для поиска оптимального решения. Поиск производится по высотным отметкам трансформированного пространства. Новая высотная отметка каждого узла теперь содержит информацию не только о значении целевой функции самого узла, но и о значениях целевой функции небольшой области, окружающей данный узел. Следовательно, в процессе оптимизации производится не только максимизация целевой функции, но учитывается также робастность потенциального оптимального решения.
Единственным параметром усреднения является диапазон усредняемых узлов. Это могут быть только соседние узлы (одна линия узлов, расположенных вокруг данного узла). В случае двумерной оптимизации, каждый узел соседствует с восемью другими узлами (за исключением узлов, расположенных на границах допустимых значений параметров). Поэтому при усреднении одного ряда узлов, среднее значение рассчитывается по девяти данным – восьми значениям соседних узлов плюс значение центрального узла. При усреднении двух рядов расчет проводится по 25 данным, для трех линий – по 49 и т. д. В общем виде количество усредняемых узлов n определяется следующим образом:
где m – число рядов узлов, окружающих вычисляемый узел.
Применим данную процедуру к оптимизационной поверхности, полученной ранее в результате свертки трех целевых функций. Исходное оптимизационное пространство (рис. 2.4.1) содержит три оптимальные области, каждая из которых может рассматриваться в качестве кандидата на поиск оптимального решения. На рис. 2.5.1 показаны две трансформации оригинальной поверхности, построенные для m = 1 (усреднение одного ряда соседних ячеек) и m = 2 (усреднение двух рядов). После трансформации, состоящей в усреднении ближайших узлов (левый график рис. 2.5.1), из трех оптимальных областей осталась только одна, расположенная в диапазоне от 28 до 34 дней по параметру «количество дней до экспирации» и 75–125 дней по параметру «период истории для расчета HV». Причина исчезновения двух других областей заключается в том, что их экстремумы оказались менее робастны, чем экстремум сохранившейся области. Трансформация, полученная путем усреднения большего количества узлов (правый график рис. 2.5.1), приводит к аналогичным результатам – исчезновению двух оптимальных областей и сохранению одной области оптимизационного пространства в качестве оптимальной. Таким образом, обе трансформации указывают на предпочтительность выбора одной и той же области. Данная область, помимо наибольшей робастности, имеет еще и наибольшую площадь. Это является дополнительным преимуществом для выбора оптимального решения в пределах именно этой области.

2.5.2. Отношение среднего к стандартному отклонению
Хотя описанный в предыдущем разделе метод усреднения и учитывает при выборе оптимальной области ее высоту (значение целевой функции) и гладкость (робастность), но влияние первой величины перевешивает влияние второй. Предлагаемый в этом разделе метод придает робастности гораздо больший вес. В соответствии с данным методом значение целевой функции в каждом узле исходного оптимизационного пространства заменяется отношением среднего значения целевой функции группы узлов к стандартному отклонению, рассчитанному для этой же группы. Понятие «группы узлов» имеет тот же смысл, что и в процедуре усреднения. К группе относится сам узел и один, два, и т. д. рядов окружающих узлов. Такая трансформация поверхности учитывает как высотные отметки оптимальной области (числитель), так и гладкость ее рельефа (знаменатель).