. Это подмножество и называется множеством Парето. Каждый элемент такого множества можно считать наилучшим в определенном выше смысле. При этом число альтернатив, составляющих это множество, может быть самым различным. Например, это может быть как одна, доминирующая над всеми остальными, альтернатива, так и несколько «лучших» альтернатив или даже все исходное множество.
В нашем примере оптимизации базовой дельта-нейтральной стратегии мы имеем оптимизационное пространство A = (a>1, …, a>m), состоящее из m узлов-альтернатив (в примере m = 3600), оцененных с помощью n функций-критериев (n = 3) со значениями x(a) = (x>1(a>1), …, x>n(a>m)). Для построения множества Парето необходимо попарно сравнить все альтернативы, отбрасывая доминируемые, а недоминируемые добавляя в множество Парето. Очередной элемент ak сравнивается со всеми оставшимися. Если встречается элемент a>l, над которым a>k доминирует, то элемент a>l отбрасывается. Если оказывается, что a>k доминируем каким-либо элементом a>m из оставшихся, то отбрасывается элемент a>k. Если ни один из элементов не доминирует над a>k, то последний включается во множество Парето. Далее переходим к сравнениям элемента, следующего за a>k, со всеми оставшимися элементами. При этом максимальное количество требуемых сравнений составляет порядка 0,5m (m – 1), что вполне приемлемо для большинства случаев. Более быстрые алгоритмы требуются при построении множества Парето для большого числа критериев и альтернатив.
Как было сказано выше, недостатком метода Парето является невозможность повлиять на количество узлов, попадающих в оптимальное множество Парето. Число элементов множества может изменяться от случая к случаю и не зависит от наших пожеланий и предпочтений. Единственное оптимальное решение может быть получено только в том случае, когда оптимизационное пространство имеет узел, для которого показатели всех критериев превосходят соответствующие показатели для других узлов. В большинстве случаев вместо единственного оптимального решения получается множество.
Рассмотрим применение метода Парето на примере базовой дельта-нейтральной стратегии. В качестве критериев будем использовать те же три целевые функций, что использовались в многокритериальной оптимизации методом свертки (прибыль, максимальная просадка и процент прибыльных сделок). В отличие от свертки, метод Парето не позволяет построить полное оптимизационное пространство, аналогичное поверхности, показанной на рис. 2.4.1. Вместо этого мы получаем перечень доминирующих узлов, составляющих оптимальное множество. В результате оптимизационная поверхность превращается в координатную плоскость, обозначающую положение отдельных оптимальных узлов (рис. 2.4.2).

Двигаясь от простого к более сложному, рассмотрим сначала оптимальное множество Парето, полученное путем применения двух критериев. Из трех целевых функций можно составить три пары критериев, что позволяет получить три варианта оптимального множества. Узлы, попавшие в эти оптимальные множества, группируются на координатной плоскости в пяти областях. На левом графике рис. 2.4.2 эти области обозначены условными порядковыми номерами. Интересно отметить, что ни в одну из пяти областей не попали все три варианта оптимального множества. В третью область попал единственный узел множества, полученного в результате применения целевых функций «прибыль» и «максимальная просадка». Узлы, выбранные этой парой функций, попали также во вторую и пятую области. Узлы, соответствующие паре функций «прибыль» и «процент прибыльных сделок», расположены в первой, второй и четвертой областях. И, наконец, узлы, попавшие в оптимальное множество функций «максимальная просадка» и «процент прибыльных сделок», находятся в областях 1, 4 и 5. Такое распределение оптимальных множеств по областям координатной плоскости свидетельствует о том, что каждая из трех целевых функций вносит свой вклад в поиск оптимального решения. Поэтому в данном случае имеет смысл включить все три функции в систему многокритериальной оптимизации по методу Парето.