Корреляционный анализ показал, что все целевые функции взаимозависимы в большей или меньшей степени (рис. 2.3.2). Как и следовало ожидать, наибольшая корреляция существует между прибылью и коэффициентом Шарпа (внешняя схожесть оптимизационных пространств этих двух функций отмечалась нами в предыдущем разделе). В этом случае коэффициент корреляции очень высок (r = 0,95). Следовательно, доля недублирующейся информации, составляет всего 10 % (1 – 0,952 = 0,10). Поэтому не имеет смысла использовать одновременно и прибыль, и коэффициент Шарпа в рамках одной оптимизационной схемы.
Степень взаимозависимости между прибылью и процентом прибыльных сделок, а также между прибылью и максимальной просадкой гораздо ниже, чем между прибылью и коэффициентом Шарпа (обратная зависимость в случае с максимальной просадкой, по сути, является прямой, поскольку низкие значения просадки являются предпочтительными). В первом случае коэффициент корреляции равен 0,37 (левый средний график рис. 2.3.2), а во втором – 0,35 (правый верхний график рис. 2.3.2). Это означает, что доля недублирующейся информации для этих пар целевых функций составляет 86 и 88 % соответственно. Эти значения достаточно высоки для того, чтобы серьезно рассматривать вопрос о целесообразности их включения в систему многокритериальной оптимизации. Однако, принимая такое решение, необходимо определить, имеет ли смысл использовать обе эти функции или достаточно одной из них.

Для того чтобы принять такое решение, необходимо изучить взаимозависимость между этими двумя функциями полезности. Как следует из правого нижнего графика рис. 2.3.2 и низкого коэффициента корреляции (0,10), значения процента прибыльных сделок и максимальной просадки практически не зависят друг от друга. Информация, содержащаяся в этих двух функциях, почти не повторяется (доля не дублируемой информации составляет 99 %). Следовательно, добавление обеих целевых функций в систему многокритериального анализа вполне оправдано.
Таким образом, из четырех рассмотренных нами целевых функций имеет смысл использовать для многокритериальной оптимизации только три (прибыль, процент прибыльных сделок и максимальную просадку). Исключение из многокритериального анализа коэффициента Шарпа оправдывается не только тем, что эта функция почти полностью дублирует функцию прибыли, но еще и тем, что коэффициент Шарпа коррелирует с процентом прибыльных сделок и с максимальной просадкой в гораздо большей степени, чем функция прибыли (средний правый и левый нижний графики рис. 2.3.2).
Описанная выше процедура выбора целевых функций выглядит достаточно просто. Однако необходимо признать, что мы сознательно упростили эту процедуру, для того чтобы излишне не усложнять описание. Теперь мы устраним это упрощение, чтобы продемонстрировать всю сложность и многоплановость процесса выбора подходящих целевых функций.
Дело в том, что взаимозависимости, представленные на рис. 2.3.2, были построены на основании всего набора данных, составляющих оптимизационные пространства целевых функций. Это значит, что данные взаимозависимости строились для полных диапазонов значений двух параметров (2–120 дней для количества дней до экспирации опционов, 5–300 дней для периода истории для расчета HV). Например, для оценки корреляции между прибылью и коэффициентом Шарпа каждому узлу на левом верхнем графике рис. 2.3.1 ставилась в соответствие точка на правом верхнем графике. Полученная в результате такого сопоставления зависимость (верхний левый график рис. 2.3.2) состоит из 3600 точек.
Вместе с тем вполне можно предположить, что степень, и даже направленность, взаимозависимостей между разными целевыми функциями может меняться в зависимости от конкретных значений параметров и, соответственно, от диапазонов их значений. Для того чтобы проверить это предположение, следует рассчитать корреляции для каждого из значений двух параметров по отдельности (то есть нужно проверить, меняются ли корреляции в зависимости от значений параметров).
Начнем с параметра «период истории для расчета HV». Корреляции между некоторыми парами целевых функций зависят, а между некоторыми – не зависят от значений этого параметра (рис. 2.3.3). Например, корреляция функций, для которых была отмечена наибольшая степень взаимозависимости (прибыль и коэффициент Шарпа), не меняется на всем диапазоне значений параметра. Все прочие пары функций демонстрируют явно выраженные тренды.