Опционы: Разработка, оптимизация и тестирование торговых стратегий - страница 35

Шрифт
Интервал

стр.

Менее суровый алгоритм может выглядеть так. На первом этапе выбираются все портфели, n из m характеристик которых удовлетворяют требованиям, предъявляемым к интервалу их допустимых значений. В наших примерах число характеристик равно 6 (m = 6). Если принять n = 5, то в примере, представленном таблицей 1.6.3, найдется единственный портфель, прошедший первый этап отбора, а в таблице 1.6.2 не окажется ни одного такого портфеля. Зато если принять n = 4, то в таблице 1.6.2 будет сразу девять портфелей, прошедших первый этап отбора (обозначены толстыми рамками в таблице). Второй этап может быть реализован теми же двумя путями, что были описаны для сурового алгоритма. Например, если считать наиболее важной характеристикой «количество комбинаций» (чем их меньше, тем лучше, но не менее 20), то из девяти альтернатив на втором этапе будет выбран портфель, определяемый параметрами (порог критерия = 15, диапазон страйков = 9). Можно пойти и другим путем. Из множества вариантов, прошедших первый этап отбора, на втором этапе можно выбрать портфель, имеющий наилучшие значения по тем характеристикам, которые не попали в интервал допустимых значений. В таблице 1.6.2 все девять портфелей имеют неудовлетворительные значения по характеристикам «процент коротких комбинаций» и «вероятность убытка». Однако портфель, определяемый параметрами (порог критерия = 7, диапазон страйков = 12), имеет по этим характеристикам лучшие показатели, чем остальные восемь портфелей. Этот портфель и может быть выбран в качестве оптимального.

Как для сурового, так и для более мягкого алгоритма реализация второго этапа может основываться на другом принципе. Вместо априорного ранжирования характеристик по степени их важности, можно принять в качестве основной ту характеристику, значения которой изменяются в более широком диапазоне, чем значения других характеристик. Например, в таблице 1.6.2 все значения характеристик «коэффициент асимметричности» и VaR лежат в очень узком интервале значений. Поэтому все девять портфелей, прошедших первый этап отбора, почти не отличаются друг от друга по этим характеристикам. Следовательно, не имеет никакого смысла выбирать их в качестве основных ориентиров для второго этапа выбора. С другой стороны, значения характеристик «количество комбинаций» и «количество базовых активов» варьируют в широком диапазоне значений (от 79 до 200 и от 21 до 51 соответственно). Поэтому в данном конкретном случае будет естественным использовать эти характеристики в качестве основных для окончательного выбора оптимального портфеля.

Необходимо подчеркнуть, что какой бы алгоритм выбора оптимального портфеля ни был принят к реализации при разработке автоматизированной торговой стратегии, от него во многом зависит, какой из вариантов дельта-нейтрального портфеля будет в конечном итоге использован для открытия позиций.

Глава 2. Оптимизация

2.1. Обзор основных понятий

Проблема выбора наилучшего решения возникает во всех сферах человеческой деятельности. Поиск оптимальных решений постоянно производится как на индивидуальном уровне, так и в масштабах различных финансовых, производственных и общегосударственных структур. Несмотря на многочисленный арсенал методов, разработанных для поиска оптимальных решений, единственного подхода, одинаково пригодного для всех случаев, не существует. Это связано и с разнообразием задач, и с ограниченностью средств для их решения (машинного времени, памяти и т. п.). Дать строго определенные, формализованные методы решения задач оптимизации может только синтетический подход, основанный на комбинированном применении достижений различных разделов математики.

Задача оптимизации может заключаться в поиске определенной структуры объекта (структурной оптимизации) или последовательности действий (календарной оптимизации). Однако в контексте построения автоматизированных торговых стратегий наибольший интерес представляет параметрическая оптимизация. В этом случае поиск наилучшего решения осуществляется путем выбора значений для величин, составляющих совокупность числовых параметров.


стр.

Похожие книги