Очевидное? Нет, еще неизведанное… - страница 35
Очень важные соображения.
И тем не менее в наших рассуждениях есть очень существенный пробел. Когда мы переходили от одной системы отсчета к другой, мы молчаливо допускали, что время в обеих системах течет одинаково. Если внимательно проследить за выводом, то можно увидеть, что в выражении x>1 = x>0 + (V – v)t величина t по своему смыслу означает время, измеренное в системе K. А строго говоря, чтобы описывать движение тела в системе K>1 мы должны вместо t использовать t>1, то есть время, измеренное в системе K>1. Может быть, в системе K>1 к моменту определения координат тело прошло 5 минут, а в системе K только 4?! Но мы молчаливо предполагали, что t>1 = t.
Почему мы сделали это предположение?
Только потому, что повседневный опыт убеждает нас в его справедливости>[21].
Однако возникает законный вопрос, что вообще означают слова «время, измеренное в одной системе, время, измеренное в другой системе», какой смысл вкладывается в эти понятия?
Какой физический процесс соответствует символам t>1 и t, а, кстати, заодно и x>1 и x?
Символы — это ведь не более чем символы. Они получают жизнь только тогда, когда мы однозначно определим, как именно можно отыскать те физические величины, которые они описывают.
Таким образом, вопрос о переходе от одной системы отсчета к другой возвращает нас снова к проблеме измерения времени.
Поэтому логично и естественно дать именно сейчас рецепт для измерения и координат и времени в данной системе.
1. Координата или длина в системе K определяется сравнением ее с масштабной линейкой, неподвижной в этой системе.
2. Время в системе К определяется показаниями часов, покоящихся в данной системе.
В другой координатной системе K>1 необходимо иметь часы и масштаб, которые покоятся в этой системе, и все измерения производить именно этим масштабом и этими часами.
Как видите, x>1 и x, или t>1 и t, соответствуют, вообще говоря, разным физическим процессам — измерениям, которые проводятся в разных физических условиях. Но достаточно предположить существование сигналов, распространяющихся с бесконечной скоростью, чтобы убедиться в том, что t>1 = t.
Не будем далее углубляться в дебри анализа. Мы зафиксировали наше предположение и объяснили смысл значков x и x>1, t и t>1. Пока этого достаточно.
Итак, формулы перехода от одной системы K к другой K>1, равномерно и прямолинейно движущейся вдоль оси x первой системы, имеют вид:
x>1 = x – vt;
y>1 = y;
z>1 = z;
t>1 = t.
Это преобразование координат и времени при переходе от одной системы к другой называют преобразованием Галилея.
Естественно расширить вопрос. А как обстоит дело с остальными законами механики? Будут ли справедливы в системе K>1 все остальные законы в том случае, если они соблюдаются в системе K? Говоря другими словами, будет ли система K>1 также инерциальной системой отсчета? Оказывается, что да, будет.
Если K — инерциальная система, то любая система отсчета (K>1), равномерно и прямолинейно движущаяся относительно K, также инерциальна.
Выражая ту же мысль другими словами, говорят: законы механики инвариантны (неизменны) по отношению к преобразованию Галилея. Но если только K>1 движется ускоренно относительно K, то в ней законы механики имеют другой вид.
Вот утверждения: инерциальных систем отсчета бесконечно много, при описании механических явлений все они равноправны, законы механики во всех инерциальных системах отсчета имеют один и тот же вид, — как раз и составляют принцип относительности Галилея — важнейший принцип механики Ньютона.
Снова принцип относительности Галилея.
Но не будем обольщаться. Мы не доказали принцип относительности совершенно строго. Мы проделали только часть работы — обосновали инвариантность (дословно — неизменяемость) первого закона Ньютона при переходе от одной инерциальной системы к другой. Инвариантность других законов Ньютона мы провозгласили. (Собственно говоря, мы их еще и не сформулировали.)