Довольно очевидно, что если ввести какую-либо другую систему отсчета, равномерно и прямолинейно движущуюся относительно нашей инерциальной системы, то в этой новой системе свободное тело также сохраняет свою скорость неизменной. Таким образом, первый закон Ньютона и в этой «новой» системе имеет точно такой же вид, как и в «старой» инерциальной системе.
Сложный, но существенный отрывок.
И напротив, если для описания состояния свободного тела использовать систему отсчета, ускоренно движущуюся относительно нашей инерциальной системы, то в этой «ускоренной» системе отсчета поведение свободного тела уже не будет описываться первым законом Ньютона. В такой «нехорошей» системе отсчета свободное тело не будет находиться в состоянии покоя или равномерного прямолинейного движения. Оно будет двигаться с ускорением.
Можно сделать вывод: если найдена одна система отсчета, в которой для свободного тела выполняется первый закон Ньютона, то этот же закон будет соблюдаться в любой из бесконечного числа систем отсчета, равномерно и прямолинейно движущихся относительно первичной системы.
И с другой стороны, существует бесконечное множество систем отсчета, в которых первый закон Ньютона не соблюдается. А именно: любая из систем, ускоренно движущихся относительно инерциальной системы.
Более строгие, но несколько абстрактные рассуждения, подтверждающие нашу точку зрения.
Возможно, предыдущие рассуждения оставили чувство неудовлетворенности. Ведь мы сами утверждали, что необходимо добиваться полной ясности и четкости, даже говоря о самых очевидных вещах. Поэтому, как ни очевидно утверждение: «Если первый закон Ньютона выполняется в одной системе отсчета, то он выполняется и во всех системах отсчета, равномерно и прямолинейно движущихся относительно нашей», — его нужно обосновать.
Схема рассуждений должна быть примерно такой. Пусть дана какая-то система отсчета: обозначим ее для удобства, скажем, буквой K. В ней мы умеем описывать движение тел и предметов при помощи законов Ньютона. Так, если изучаемое тело изолировано и свободно, оно в нашей системе либо покоится, либо движется с постоянной скоростью V.
Но вот есть другая система отсчета, скажем K>1, которая движется относительно К равномерно и прямолинейно с известной нам скоростью v.
При этих условиях мы должны научиться определять положение изучаемого тела в новой системе отсчета. Ведь чтобы ответить на вопрос, каков характер движения тела в новой системе K>1, надо знать его координаты в этой системе в любой момент времени.
Иными словами, нужно найти закон перехода от одной системы отсчета к другой.
Найти этот закон довольно просто в самом общем случае, но мы рассмотрим наипростейший, а именно: во-первых, когда система K>1 движется с постоянной скоростью вдоль оси x системы K; и во-вторых, когда скорость нашего свободного тела V направлена также вдоль оси x системы K.
Тогда, если в момент t>0 = 0 системы отсчета совпадали, то за время t начало координат системы K>1 «уедет» на расстояние S = vt. Как видно из чертежа, координаты тела в новой системе можно найти, зная координаты в старой системе и используя очевидные соотношения:
x>1 = х – vt;
у>1 = у;
z>1 = z.
Прошу поверить на слово, что если рассматривать общий случай (скорости V и v направлены не вдоль осей и не совпадают по направлениям), наши выводы останутся правильными.
Но вернемся к примеру. В каждый данный момент времени в старой системе отсчета координаты нашего тела определяются соотношениями:
x = x>0 + Vt;
y = y>0;
z = z>0.
Здесь x>0, y>0, z>0 — координаты тела в начальный момент t = 0.
Вспомнив формулы для перехода от одной системы к другой, получаем:
x>1 = x>0 + (V – v)t;
у>1 = у>0;
z>1 = z>0.
Итак, в новой системе тело снова двигается равномерно и прямолинейно вдоль оси x>1, но уже с новой скоростью V>1 = V – v.
Когда читатель познакомится с преобразованиями Лоренца, стоит еще раз взглянуть на эти формулы.
Иначе говоря, мы доказали, что если первый закон Ньютона справедлив в системе K, то он справедлив и в K>1.
Точно так же (хотя с формальной стороны это несколько сложнее) можно показать, что если