В первый период пребывания в России Эйлер написал и издал в 1736 году свой труд «Механика в аналитическом изложении», ставший началом нового направления в развитии этой науки.
Работы, изданные Петербургской Академией наук, доставили Эйлеру большую известность. Прусский король Фридрих Великий письмом из военного лагеря пригласил его в 1741 году в Берлинскую Академию наук. Эйлер принял предложение и поехал в Берлин, где прожил двадцать пять лет.
В этот, второй период своей жизни Эйлер издал больше сотни ценных математических трудов и работ по механике. В 1766 году Эйлер по приглашению императрицы Екатерины II снова возвратился в Россию и оставался в Петербурге до конца жизни.
В первый же год по возвращении в Петербург Эйлер потерял и второй глаз. Ему остались доступны только крупные меловые знаки на черной доске. Но Эйлер не уменьшил масштаба своей научной деятельности. Он продолжал выпускать математические труды, работая до последнего дня жизни.
Эйлер отказался от трудных геометрических выводов Ньютона. Он изучал движение аналитически, выражая зависимость между временем и положением материальной точки уравнениями.
Эйлер утверждал, что «всякое тело, которое передвигается в другое место… проходит через все средние места и не может из начального места перейти сразу в конечное».
Это значит, что в течение чрезвычайно короткого промежутка времени и положение тела изменится очень мало. Поэтому к изучению движения тела можно применить исчисление бесконечно малых величин.
При геометрическом методе логическое рассуждение связано с проводимыми линиями и плоскостями, которые нужно начертить. Аналитический же метод заключается в операциях с математическими знаками, не связанными с наглядными представлениями. Он дает возможность легко производить сложные операции, недоступные для геометрического способа.
Введение Эйлером аналитического метода в механику лишило ее наглядности, которую давал геометрический метод Галилея, Гюйгенса и Ньютона, но зато аналитический метод способствовал быстрому развитию этой науки.
Изучая обращение планет, можно было принимать их за материальные точки — так малы их размеры по сравнению с космическими расстояниями.
Но как движутся части машин? Какие усилия возникают в них при работе?
Части машин — не материальные точки, движущиеся под действием сил. В них возникают напряжения, и они действуют одна на другую. Чтобы рассчитывать машины, стало необходимым разработать механику твердого тела, едва затронутую в работах Гюйгенса и Ньютона.
Занявшись изучением вращения твердых тел, Эйлер должен был прокладывать новые пути в этой неизученной области.
В 1756 году Эйлер издал свой труд «Теория движения твердых тел», в котором установил важнейшие законы вращения твердого тела. Для этого ему понадобилось ввести в механику новые, ранее неизвестные понятия о «моментах»[16]. Одно из них — момент инерции тела относительно оси вращения.
Если принять грузик нитяного маятника за материальную точку, то моментом инерции его относительно оси вращения будет произведение массы на квадрат длины нити. Момент инерции вращающегося тела есть сумма произведений масс его точек на квадраты расстояний от оси вращения.
Гюйгенс пользовался уже этой величиной при изучении колебаний физического маятника. Эйлер обобщил понятие о моменте инерции и применил его при выводе законов вращения всех тел.
Определение момента инерции тел даже правильной геометрической формы представляет собой сложную задачу. Ее решают, разбивая тела на бесконечно малые элементы, момент инерции которых легко определить. Суммируя моменты инерции всех элементов, определяют искомый момент инерции тела.
Например, чтобы найти момент инерции диска относительно перпендикулярной к нему оси, проходящей через его центр, диск разбивают на большое число концентрических колец. Момент инерции диска равен сумме моментов инерции этих колец.
Подобным же способом можно определить момент инерции шара относительно одного из диаметров. Для этого нужно разделить шар системой параллельных плоскостей, перпендикулярных к этому диаметру, на множество дисков. Момент инерции шара равен сумме моментов инерции дисков относительно диаметра, служащего осью вращения.