Новый взгляд на мир. Фрактальная геометрия - страница 48

Шрифт
Интервал

стр.


Как мы уже отмечали, первым математиком, который «открыл» хаос или по меньшей мере попытался интуитивно понять его, был Пуанкаре. В 1890 г., когда Пуанкаре работал над решением астрономической задачи трех тел (суть задачи — определить положение и скорости трех тел произвольной массы, взаимодействующих по закону тяготения Ньютона, например Солнца, Земли и Луны, в любой момент времени), он обнаружил, что тела в этой задаче могут вращаться по хаотическим орбитам. Спустя восемь лет его соотечественник Жак Адамар опубликовал работу о хаотическом движении трех частиц, имевшую огромное влияние, в которой доказал, что траектории этих частиц нестабильны и отклоняются друг от друга. Адамар анализировал движение трех частиц при наличии трения вдоль поверхности с отрицательной кривизной. Эта поверхность впоследствии получила название «бильярд Адамара».

В 1963 г. американский математик и метеоролог Эдвард Лоренц занимался изучением определенных уравнений, которые, как он надеялся, помогли бы предсказывать погоду, и попытался представить их графически с помощью компьютеров. Самые быстрые компьютеры того времени были довольно медленными по сравнению с сегодняшними, поэтому как-то раз Лоренц вышел попить чаю, пока компьютер не закончит расчеты. Вернувшись, он обнаружил очень странную фигуру, которая получила название аттрактора Лоренца.



Графическое изображение аттрактора Лоренца.


Лоренц посчитал, что произошла какая-то ошибка, и повторил расчеты несколько раз, но результат не изменился. Тогда он подумал, что проблема заключена в самой системе. Тщательно изучив ее и подставив различные параметры, он заметил, что начальные условия были очень похожими, но результаты симуляций заметно отличались. Лоренц обратил внимание на то, что система, созданная им самим, позволяла указывать начальные условия с точностью не более трех знаков после запятой, но в действительности программа работала с шестью знаками после запятой, а три последних знака задавались случайным образом. Лоренц пришел к выводу, что эти незначительные, практически незаметные ошибки в начальных условиях увеличивались экспоненциально. К сожалению, Лоренц опубликовал свои результаты в специализированных метеорологических журналах, и о них никто не вспоминал почти десять лет.

Это явление, которое сегодня носит название чувствительности к начальным условиям, упоминается уже в работах Адамара и неявно в работах Пуанкаре. Если углубиться в историю, то можно вспомнить шотландского физика Джеймса Клерка Максвелла, который в 1876 г. занимался изучением различных хаотических событий, например искр, с которых начинается лесной пожар, или камня, с падением которого обрушивается лавина[26].

Лоренц опубликовал свои открытия в 1963 г. в документе, предназначенном для Нью-Йоркской академии наук, в котором привел комментарий, оставленный его коллегой-метеорологом: «Если эта теория верна, то взмах крыльев чайки может навсегда изменить погоду». Позднее, согласно все тому же Лоренцу, когда он не мог подобрать название для речи, с которой должен был выступить на заседании Американской ассоциации содействия развитию науки в 1972 г., его коллега, Фелипе Мерилис, предложил такое название: «Может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?».

В любом случае нет никаких сомнений, что Лоренцу был известен следующий отрывок из «Силы слов» Эдгара По:

«К примеру, когда мы жили на Земле, то двигали руками, и каждое движение сообщало вибрацию окружающей атмосфере. Эта вибрация беспредельно распространялась, пока не сообщала импульс каждой частице земного воздуха, в котором с той поры и навсегда нечто было определено единым движением руки. Этот факт был хорошо известен математикам нашей планеты. Они достигали особых эффектов при сообщении жидкости особых импульсов, что поддавалось точному исчислению — так что стало легко определить, за какой именно период импульс данной величины опояшет земной шар и окажет воздействие (вечное) на каждый атом окружающей атмосферы».

Суть открытия Лоренца, которое позднее получило название «эффект бабочки», такова: существует вероятность, что малейшее изменение начальных условий системы, подобное движению воздуха, вызванному взмахом крыла бабочки, по отношению к климату Земли может повлечь за собой цепочку последствий, которые окажут существенное влияние на всю систему


стр.

Похожие книги