Лекции по физике 6a - страница 38
(25.24)
При этом предполагается, что штрихованная система координат движется по отношению к нештрихованной со скоростью vв направлении оси х.
Рассмотрим один пример плодотворности идеи 4-потенциала. Чему равны векторный и скалярный потенциалы заряда q, движущегося со скоростью vв направлении оси х! Задача очень упрощается в системе координат, движущейся вместе с зарядом, ибо в этой системе заряд покоится. Пусть заряд находится в начале координат системы S', как это показано на фиг. 25.2.
Фиг. 23.2. Система отсчетаS' движется со скоростью v(в направлении оси х) по отношению к системе S.
Заряд, покоящийся вначале системы координат S', находится в системе Sв точке x=vt. Потенциалы в точке Р могут быть найдены для любой системы отсчета.
Скалярный потенциал в движущейся системе задается выражением
(25.25)
причем r' — расстояние от заряда qдо точки в движущейся системе, где производится измерение поля. Векторный же потенциал А', разумеется, равен нулю.
Теперь без особых хитростей можно найти потенциалы j и А в неподвижной системе координат. Соотношениями, обратными к уравнениям (25.24), будут
(25.26)
Используя далее выражение для j'[см. (25.25)] и равенство А'=0, получаем
Эта формула дает нам скалярный потенциал j, который мы увидели бы в системе S, но он, к сожалению, записан через координаты штрихованной системы. Впрочем, это дело легко поправимо; с помощью (25.1) можно выразить t', х', у', z' через t, x, у, zи получить
(25.27)
Повторяя ту же процедуру для вектора А, вы можете показать,
что
А = vj. (25.28)
Это те же самые формулы, которые мы вывели в гл. 21, но там они были получены другим методом.
§ 6. Инвариантность уравнений электродинамики
Итак, потенциалы j.и А, оказывается, образуют в совокупности четырехвектор, который мы обозначили через А>m>, а волновое уравнение (полное уравнение, выражающее А>mчерез j>m) можно записать в виде (25.22). Это уравнение вместе с сохранением заряда (25.19) составляют фундаментальный закон электромагнитного поля:
(25.29)
И вот, пожалуйста, все уравнения Максвелла просто и красиво записываются всего в одной строке. Достигли ли мы чего-нибудь, записав их в таком виде, кроме, разумеется, красоты и простоты? Прежде всего, есть ли здесь какое-нибудь отличие от того, что было раньше, когда мы выписывали их во всем разнообразии компонент? Можно ли из этих уравнений получить нечто, чего нельзя получить из волновых уравнений для потенциалов, содержащих заряды и токи? Ответ вполне определенный — конечно, нельзя. Единственное, что мы сделали — это изменили названия, т. е. использовали новые обозначения. Мы нарисовали квадратик для обозначения производных, но это по-прежнему не более и не менее как вторая производная по tминус вторая производная по х, минус вторая производная по у, минус вторая производная по z. А значок m, говорит, что у нас есть четыре уравнения, по одному для каждого из значений m=t, х, у или z. Какой же тогда смысл того, что уравнения можно записать в столь простой форме? С точки зрения получения чего-то нового — никакого. Хотя, возможно, простота уравнений и выражает определенную простоту природы. Сейчас я покажу вам нечто интересное, чему мы понемногу научились. Можно сказать, что все законы физики описываются
одним уравнением:
U=0. (25.30)
Не правда ли, удивительно простое уравнение! Конечно, нужно еще знать, что обозначает символ U. Это физическая величина, которую мы будем называть «несообразностью» ситуации. У нас даже есть для нее формула. Вот как вычисляется эта несообразность: вы берете все физические законы и записываете их в особой форме. Например, вы взяли закон механики F=ma и записали его в виде F-ma=0.
Теперь вы можете величину (F-mа), которая, разумеется, в нашем мире должна быть нулем, назвать «несообразностью» механики. Затем вы берете квадрат этой несообразности, обозначаете его через U>1 и называете ее «механической несообразностью». Другими словами, вы берете
(25.31)
который можно назвать «гауссовой электрической несообразностью». Продолжая этот процесс, вы можете ввести U