Лекции по физике 6a - страница 40

Шрифт
Интервал

стр.

В предыдущей главе мы видели, что потен­циал A>m =(j, А) является четырехвектором. Его временной компонентой служит скалярный по­тенциал j, а тремя пространственными компо­нентами— векторный потенциал А. Используя преобразования Лоренца, мы нашли также потенциал частицы, движущейся прямолинейно с постоянной скоростью. (В гл. 21 то же самое было сделано несколько иным методом.) Для точечного заряда, координаты которого в мо­мент tравны (vt, 0, 0), потенциалы в точке (х, у, z) имеют вид

(26.1)

Уравнения (26.1) дают потенциалы в точке х, у, zв момент t, возникающие от движуще­гося заряда, «истинное» положение которого (имеется в виду положение в момент времени t) x=vt. Заметьте, что в уравнение входят координаты (x-vt), у и z, которые являются коор­динатами относительно переменного положения Р движущегося заряда (фиг. 26.1). Но, как вы знаете, истинное влияние распространяется на самом деле со скоростью с, так что поле в точке определяется на самом деле запаздывающим положением заряда Р', координата х которого равна vt' (где t'=t-r'/с — «запаздывающее» время».)


Фиг. 26.1. Определение полей в точке P от заряда q, движущегося вдоль оси xс постоянной скоростью v. (Поле в точке (x, y, z) в «настоящий момент» можно выразитькак через «истинное» положениеPтак и через «запаздывающее» положение P’ (т. е. положение в момент t’=t-r’/c).

Нам, однако, известно, что заряд двигался с постоянной скоростью по прямой линии, поэтому естественно, что поведение в точке Р' непосредственно связано с переменным положением заряда. Фактически, если мы добавим предположение, что потен­циалы зависят только от положения и скорости в запаздывающий момент, тогда уравнение (26.1) будет представлять собой полную формулу для потенциалов заряда, движущегося любым обра­зом. Вот как все это работает. Пусть у вас имеется заряд, дви­жущийся каким-то произвольным образом, скажем, по траекто­рии, изображенной на фиг. 26.2, и вы пытаетесь найти потен­циал в точке (х, у, z). Прежде всего вы находите запаздывающее положение Р' и скорость v' в этой точке. Вообразите затем, что заряд сохраняет свое движение с этой скоростью на весь период запаздывания (t'-t), так что он появился бы затем в воображае­мом положении Р>пр, которое мы будем называть «проекци­онным», причем двигаясь с той же скоростью v'. (На самом деле он, конечно, не делает этого; в момент tон находится в точке Р.) Тогда потенциалы в точке (х, у, z) будут как раз такими, кото­рые дали бы уравнения (26.1) для воображаемого заряда в про­екционном положении Р>пр. Мы хотим здесь сказать, что, по­скольку потенциалы зависят только от того, что делает заряд в запаздывающий момент, они будут одинаковы, независимо от того, продолжает ли заряд свое движение с постоянной скоро­стью или изменяет его после момента t', т. е. после того, как по­тенциалы, которые возникнут в момент tв точке (х, у, z), уже определены.

Вы понимаете, конечно, что в тот момент, когда получены формулы для потенциалов произвольно движущегося заряда, мы имеем полную электродинамику; из принципа суперпози­ции мы можем получить потенциалы для любого распределения зарядов.



Фиг. 26.2. Движение за­ряда по произвольной тра­ектории.

Потенциалы в точке (х, у, z) в момент tопределяютсяположением Р' и скоростью v' в за­паздывающий момент t'— t-r' /с. Их удобно выражать через коор­динаты относительно «проек­ционного» положения P>пр(ис­тинным положением в момент tявляется точка Р).

Следовательно, все явления электродинамики можно вывести либо из уравнений Максвелла, либо из следующего ряда замечаний. (Запомните их на случай, если вы вдруг очу­титесь на необитаемом острове. Исходя из них, можно восста­новить все. Преобразования Лоренца вы, конечно, помните. Не забывайте их ни на необитаемом острове, ни в каком-либо другом месте.)

Во-первых, А>mчетырехвектор. Во-вторых, кулонов по­тенциал любого покоящегося заряда равен q/4pe>0r. В-тре­тьих, потенциал, созданный зарядом, движущимся произволь­ным образом, зависит только от положения в запаздывающий момент времени. Из этих трех фактов вы можете получить все. Из того, что


стр.

Похожие книги