Лекции по физике 6a - страница 32
расположение нескольких радиоантенн может привести к такой интерференционной
^ картине, что в одном направлении сигнал будет очень сильный, а в других сигналов вообще не будет.
Вернемся к фиг. 24.15
и посмотрим на поля на большом расстоянии от линии изображений источников.
Фиг. 24.16. Одна совокупность когерентных волн от вереницы
линейных источников.
Ф us. 24.17. Поле в волноводе можно рассматривать как наложение двух верениц плоских волн.
Поля будут велики лишь в некоторых направлениях, зависящих от частоты, именно в тех направлениях, в каких поля всех источников попадают в фазу друг к другу и складываются. На заметном расстоянии от источников поле в этих специальных направлениях распространяется как плоские волны. Мы изобразили такую волну на фиг. 24.16, где сплошными линиями даны гребни волн, а штрихом — впадины. Направление волны должно быть таким, чтобы разность запаздываний от двух соседних источников до гребня волны отвечала полупериоду колебания. Иными словами, разность между r>2 и r>0на рисунке равна половине длины волны в пустом пространстве:
Тогда угол q дается условием
(24.33)
Имеется, конечно, и другая совокупность волн, бегущих вниз под симметричным углом по отношению к линии источников. А полное поле в волноводе (не слишком близко к источнику) является суперпозицией этих двух совокупностей волн (фиг. 24.17). Конечно, в действительности картина истинных полей совпадает с изображенной лишь в пространстве между стенками волновода.
В таких точках, как А к С, гребни двух волновых картин совпадут, и у поля будет максимум; в точках же наподобие В пики обеих волн направлены в отрицательную сторону, и поле обладает минимумом (наименьшим отрицательным значением). С течением времени поле в волноводе будет двигаться вдоль него. Длина волны будет равна l>g— расстоянию от Ago С. Она связана с q формулой
(24.34)
Подставляя (24.33) вместо q, получаем
(24.35)
что в точности совпадает с (24.19).
Теперь нам становится понятно, почему волны распространяются только выше граничной частоты w>с. Если длина волн в пустом пространстве больше 2а, то не существует угла, под которым может появиться волна, показанная на фиг. 24.16. Необходимая для этого конструктивная интерференция возникает внезапно, едва X>0 оказывается меньше 2а, или, что то же самое, когда w>0=pс/а.
А если частота достаточно высока, то может появиться два
или больше возможных направления распространения волн.
2 В нашем случае это произойдет при l>0<>2/>3а. Но вообще-то это может происходить и при l>0<а. Эти добавочные волны отвечают высшим типам волн, о которых мы говорили.
После нашего анализа становится также ясно, отчего фазовая скорость волн, бегущих по трубе, превышает с и зависит от со. Когда w меняется, меняется и угол на фиг. 24.16, под которым в пустом пространстве распространяются волны, а вместе с этим меняется и скорость вдоль трубы.
Хотя мы описали волны в волноводе в виде суперпозиции полей бесконечной совокупности линейных источников, но можно убедиться в том, что тот же результат можно было бы получить, представив себе две совокупности волн в пустом пространстве, многократно отражаемых от двух идеальных зеркал вперед и назад, и вспоминая, что подобное отражение означает перемену знака фазы. Эти совокупности отражаемых волн гасили бы друг друга под всеми углами, кроме угла q [см. (24.33)]. Одну и ту же вещь можно рассматривать многими способами.
Глава 25
ЭЛЕКТРОДИНАМИКА
В РЕЛЯТИВИСТСКИХ ОБОЗНАЧЕНИЯХ
§ 1. Четырехвекторы
§ 2. Скалярное произведение
§ 3. Четырехмерный градиент
§ 4. Электродинамика в четырехмерных обозначениях
§ 5. Четырехмерный потенциал движущегося заряда