Лекции по физике 6a - страница 34
Наша программа состоит в том, чтобы повторить в четырехмерном пространстве-времени все то, что мы делали с векторами в трех измерениях. Дело это нехитрое — мы просто будем действовать аналогично. Единственное затруднение встретится только при обозначениях (символ вектора у нас уже занят трехмерными векторами), и несколько изменятся знаки в скалярном произведении.
Прежде всего, по аналогии с векторами в трехмерном пространстве, введем четырехвектор как набор четырех величин a>t, а>х, а>уи а>z, которые при переходе в движущуюся систему координат преобразуются подобно t, x, у и z. Для обозначения четырехвектора используется несколько различных способов. Мы же будем писать просто а>m, понимая под этим группу четырех величин (a>t, a>x, a>y, a>z); другими словами, значок m принимает какое-либо из четырех «значений»: t, x, у и г. Иногда нам будет удобно обозначать три пространственные компоненты в виде трехмерного вектора, т. е. писать a>m=(a>t>, а).
Мы уже сталкивались с одним таким четырехвектором, состоящим из энергии и импульса частицы (см. гл. 17, вып. 2). В наших новых обозначениях он запишется так:
p>m=(Е, p), (25.2)
т. е. четырехвектор p>mсостоит из энергии Е и трех компонент трехмерного импульса частицы р.
Похоже, что игра действительно оказывается нехитрой: единственное, что мы должны сделать,— это найти для каждого трехмерного вектора недостающую компоненту и получить четырехвектор. Однако все же эта задача потруднее, чем кажется на первый взгляд. Возьмем, например, вектор скорости с компонентами
Что будет его временной компонентой? Инстинкт подсказывает нам, что поскольку четырехвектор подобен t, x, у, z, то временной компонентой как будто должно быть
Но это неверно. Дело в том, что время tв каждом знаменателе не инвариантно при преобразованиях Лоренца. Числитель имеет правильное поведение, a dtв знаменателе портит все дело: оно не одинаково в двух различных системах.
Оказывается, что четыре компоненты «скорости», которые нам нужно выписать, превратятся в компоненты четырехвектора, если мы попросту поделим их на Ц(1-v>2). В правильности этого можно убедиться, взяв
четырехвектор импульса
(25.3)
и поделив его на массу покоя, которая в четырехмерном пространстве является скаляром. Мы получим при этом
(25.4)
что по-прежнему должно быть четырехвектором. (Деление на скаляр не изменяет трансформационных свойств.) Так что четырехвектор скорости v>mможно определить так:
(25.5)
Это очень полезная величина; мы можем теперь написать, например,
(25.6)
Таков типичный вид, который должен иметь правильное релятивистское уравнение: каждая сторона его должна быть четырехвектором. (В правой части стоит произведение инварианта на четырехвектор, которое по-прежнему есть четырехвектор.)
§ 2. Скалярное произведение
То, что расстояние от некоторой точки до начала координат не изменяется при повороте, если хотите,— счастливая случайность. Математически это означает, что r>2=x>2+y>2+z>2 является инвариантом. Другими словами, после поворота r'>2=r>2 или
Возникает вопрос: существует ли подобная величина, которая инвариантна при преобразованиях Лоренца? Да, существует. Из (25.1) вы видите, что
Она была бы всем хороша, если бы только не зависела от нашего выбора оси х. Но этот недостаток легко исправить вычитанием y/>2 и z>2. Тогда преобразование Лоренца плюс вращение оставляют ее неизменной. Таким образом, роль величины, аналогичной трехмерному r>2 в четырехмерном пространстве, играет комбинация
Она является инвариантом так называемой «полной группы Лоренца», которая включает как перемещения с постоянной скоростью, так и повороты.
Далее, поскольку эта инвариантность представляет собой алгебраическое свойство, зависящее только от правил преобразования (25.1) плюс вращение, то она справедлива для любого четырехвектора. (Все они, по определению, преобразуются одинаковым образом.) Так что для любого четырехвектора а