(23.12)
Подставляя сюда наш новый результат (23.11), получаем новую поправку к электрическому полю:
(23.13)
Если теперь наше дважды исправленное поле записать в виде Е=Е>1+Е>2+Е>3>, то мы получим
(23.14)
Изменение электрического поля с радиусом происходит уже не по параболе, как было на фиг. 23.5; на больших радиусах значение поля лежит чуть выше кривой (E>1+E>2).
Мы пока еще не дошли до конца. Новое электрическое поле вызовет новую поправку к магнитному полю, а заново подправленное магнитное поле вызовет необходимость дальнейшей поправки к электрическому и т. д. и т. д. Но у нас уже есть все нужные формулы. Для В>3можно использовать (23.10), изменив индексы при В и Е с 2 до 3.
Очередная поправка к электрическому полю равна
С этой степенью точности все электрическое поле дается, стало быть, формулой
где численные коэффициенты написаны в таком виде, что становится ясно, как продолжить ряд.
Окончательно получается, что электрическое поле между обкладками конденсатора на любой частоте дается произведением E>0e>i>w>t на бесконечный ряд, который содержит только переменную wr/с. Можно, если мы захотим, определить специальную функцию, обозначив ее через J>0(x), как бесконечный ряд в скобках формулы (23.15):
Тогда искомое решение есть произведение E>0e>i>w>tна эту функцию при x=wr/c:
(23.17)
Мы обозначили нашу специальную функцию через J>0 потому, что, естественно, не мы первые с вами занялись задачей колебаний в цилиндре. Функция эта появилась давным-давно, и ее уже привыкли обозначать J>0. Она всегда возникает, когдавы решаете задачу о волнах, обладающих цилиндрической симметрией. Функция J>0 по отношению к цилиндрическим волнам — это то же, что косинус по отношению к прямолинейным волнам. Итак, это очень важная функция. И изобретена она очень давно. Затем с нею связал свое имя математик Бессель. Индекс нуль означает, что Бессель изобрел целую кучу разных функций, а наша — самая первая из них.
Другие функции Бесселя — J>1? J>2 и т. д.— относятся к цилиндрическим волнам, сила которых меняется при обходе вокруг оси цилиндра.
Полностью скорректированное электрическое поле между обкладками нашего кругового конденсатора, даваемое формулой (23.17), изображено на фиг. 23.5 сплошной линией. Для не очень больших частот нашего второго приближения вполне хватает. Третье приближение было бы еще лучше — настолько хорошо, что если его начертить, то вы бы не заметили разницы между ним и сплошной линией. В следующем параграфе вы увидите, однако, что может понадобиться и весь ряд, чтобы получилось аккуратное описание поля на больших радиусах или на больших частотах.
§ 3. Резонансная полость
Посмотрим теперь, что даст наше решение для электрического поля между обкладками конденсатора, если продолжать увеличивать частоту все выше и выше. При больших w параметр х=wr/с тоже становится большим, и первые несколько слагаемых ряда для J>0 от х быстро возрастают. Это означает, что парабола, которую мы начертили на фиг. 23.5, на больших частотах изгибается книзу круче.
В самом деле, она выглядит так, как будто поле на высокой частоте все время старается обратиться в нуль где-то при с/w, примерно равном половине а. Давайте посмотрим, действительно ли функция J>0 проходит через нуль и становится отрицательной. Сперва испытаем х=2:
Это еще не нуль; но попробуем число побольше, скажем x=2,5. Подстановка дает
В точке x=2,5 функция J>0 уже перешла через нуль. Результаты при х=2 и при х=2,5 выглядят так, как будтоJ>0 прошла через нуль на одной пятой пути от 2,5 до 2. Поэтому надо проверить число 2,4:
Фиг. 23.6. Функция Бесселя J>0(x).
С точностью до двух знаков после запятой получился нуль. Если рассчитывать точнее (или, поскольку функция J>0 известна, если разыскать ответ в книжке), то обнаружится, что J>0 " проходит через нуль при x=2,405. Мы провели расчет собственноручно, чтобы показать вам, что вы тоже способны открывать подобные вещи, а не заимствовать их из книг.
А если уж вы посмотрели про J>0 в книжке, то интересно выяснить, как она идет при больших значениях х; она напоминает кривую на фиг. 23.6. Когда х возрастает, J