Лекции по физике 4 - страница 4

Шрифт
Интервал

стр.

. Но нас, конечно, интересует не число соу­дарений за время t, а мы хотим знать число соударений за 1 сек, поэтому мы делим на tи получаем nv>xA. (Время tможет быть взято очень малым, для красоты можно писать dtи затем дифференцировать, но это все одно и то же.)

Итак, мы нашли, что сила равна

F=nv>xA·2mv>x. (39.3)

Обратите внимание, что если фиксировать плотность частиц, то сила оказывается пропорциональной площади! После этого давление найти очень просто:

P=-2nmv>2>x. (39.4)

Теперь надо исправить кое-какие неточности: прежде всего не все молекулы имеют одну и ту же скорость и не все они дви­жутся в одном направлении, так что нам приходится иметь дело с разными v>2>x! Каждая молекула, ударяясь о поршень, вносит свой вклад, поэтому надо взять среднее по всем молеку­лам. Сделав это, мы получим

P=nm<v>2>x>. (39.5)

А не забыли ли мы множитель 2? Нет, потому что лишь поло­вина атомов движется к поршню. Другие летят в проти­воположную сторону, а усредняя по v>2>x, мы усредняем как по положительным, так и по отрицательным составляющим v>x.

Если просто усреднить по v>2>x, получится вдвое больший ре­зультат. Среднее v>2>x для положительных v>xравно половине среднего v>2>x для всех v>x.

Но атомы прыгают в ящике как хотят, и поэтому ясно, что x-направление» для них ничем не отличается от любого дру­гого; они движутся куда угодно: вправо — влево, вверх — вниз, взад — вперед. Поэтому >2>x> (средний квадрат скорости движения в одном направлении) равен среднему квадрату скорости в любом другом направлении

>2>x>=>2>y>=>2>z>. (39.6)

Используем это обстоятельство для небольшого математичес­кого трюка и обнаружим, что каждый из членов в (39.6) равен их сумме, деленной на три, а сумма — это квадрат величины скорости:

<v>2>x>=>1/>3<v>2>x+v>2>y+v>2>z>=<v>2>/3. (39.7)

Это очень хорошо, потому что теперь уже не надо заботиться о координатных осях, и формулу для давления можно записать в виде

P=>2/>3n(mv>2/2). (39.8)

Мы выделили множитель >2/2>, потому что это кинетичес­кая энергия движения молекулы как целого. Итак, мы нашли

PV=N>2/>3(mv>2/2). (39.9)

Если мы будем знать скорость молекул, то очень быстро под­считаем давление.

В качестве простого примера можно описать такие газы, как гелий, пары ртути или калия при достаточно высокой тем­пературе или аргон; это одноатомные газы, для которых можно считать, что их атомы не имеют внутренних степеней свободы. Если нам попадется сложная молекула, то в ней могут быть всевозможные внутренние движения, всякого рода колебания и т. д. Мы предполагаем, что можно не принимать их в расчет; но можно ли это делать — вопрос сложный и мы к нему вер­немся; в действительности для нашего случая это окажется допустимым. Итак, предположим, что внутреннее движение атомов можно не рассматривать, и поэтому кинетическая энер­гия движения молекулы как целого восполняет всю энергию. Для одноатомного газа кинетическая энергия — действительно полная энергия. Будем обозначать полную энергию буквой U(иногда ее называют полной внутренней энергией, как-будто у газа может быть какая-то внешняя энергия), т. е. всю энергию всех молекул газа или любого другого объекта.

В случае одноатомного газа мы предположим, что полная энергия Uравна произведению числа атомов на среднюю кине­тическую энергию каждого из них, потому что мы пренебрегли возможным возбуждением атомов или какими-то внутриатом­ными движениями. Тогда

PV=>2/>3U. (39.10)

Немного задержимся и ответим на такой вопрос: предпо­ложим, что мы медленно сжимаем газ; каким должно быть давление, чтобы сжать газ до заданного объема? Определить это легко, так как давление есть энергия, деленная на объем. Но когда газ сжимается, производится работа и поэтому энер­гия газа Uвозрастает. Процесс сжатия описывается неким диф­ференциальным уравнением. В начальный момент газ занимает определенный объем и обладает определенной энергией, поэ­тому нам известно и давление. Как только мы начинаем сжи­мать газ, энергия Uвозрастает, объем Vуменьшается, а как изменяется давление, нам еще предстоит узнать.

Итак, нам предстоит решить дифференциальное уравнение. Сейчас мы это сделаем. Однако подчеркнем сначала, что, сжи­мая газ, мы предполагаем, что вся работа уходит на увеличение энергии атомов газа. Вы спросите: «А необходимо ли на этом останавливаться? Куда же еще она может уйти?» Но оказыва­ется, что затраченная работа может уйти и в другое место. Энергия может «вытечь» из ящика сквозь стенки: горячие (т. е. очень быстрые) атомы при бомбардировке будут нагревать стенки ящика и энергия выйдет наружу. Но мы предполагаем, что в нашем случае этого не происходит.


стр.

Похожие книги