Лекции по физике 4 - страница 3

Шрифт
Интервал

стр.

. Какова должна быть эта сила? Говоря о силе, мы будем относить ее к единице площади: если площадь поршня равна А, то действующая на него сила будет пропорциональна площади. Определим давление как величину, равную отноше­нию приложенной к поршню силы к площади поршня:

P =F/A. (39.1)

Чтобы лучше понять, для чего это делается, подсчитаем бесконечно малую работу dW, которую надо затратить, чтобы протолкнуть поршень на бесконечно малое расстояние —dx(позднее это понадобится нам и для других целей); эта работа равна произведению силы на расстояние или, согласно (39.1), произведению давления, площади поршня и расстояния. Все это равно произведению давления на изменение объема, взя­того с обратным знаком:

dW=F(-dx)=-PAdx=-PdV. (39.2)

(Произведение площади А на изменение высоты dxравно из­менению объема.) Знак минус в этом выражении возникает из-за того, что при сжатии объем уменьшается; если принять это во внимание, то мы получим правильный результат: чтобы сжать газ, надо затратить работу.

Итак, с какой силой надо давить на поршень, чтобы уравно­весить удары молекул? При каждом ударе поршню сообщается некий импульс. В каждую секунду поршень получает опреде­ленный импульс и начинает двигаться. Чтобы предотвратить это, приложенная нами сила за секунду должна сообщить поршню точно такой же импульс. Таким образом, сила равна импульсу, сообщенному поршню за 1 сек. Можно об этом ска­зать и иначе: если предоставить поршень самому себе, то он за счет бомбардировки наберет скорость и с каждым ударом будет подталкиваться и двигаться с ускорением. Быстрота изменения скорости поршня, или ускорение, пропорциональна действующей силе. Таким образом, сила, которую мы опреде­лили как произведение давления на площадь, равна импульсу, сообщенному поршню за 1 сек всеми молекулами внутри ящика.

Подсчитать импульс, передаваемый поршню за 1 сек, легко; мы сделаем это в два этапа: сначала определим импульс, пере­данный одним атомом при столкновении с поршнем, а потом умножим эту величину на число соударений атомов с поршнем за 1 сек. Сила и будет произведением этих двух величин.

Займемся теперь этими величинами: предположим сна­чала, что поршень — это идеальный «отражатель» атомов. Если это не так, то вся наша теория рухнет — поршень нач­нет нагреваться и произойдет много всяких событий, предска­зать которые мы не в состоянии. Однако, когда снова устано­вится равновесие, в результате окажется, что каждое столк­новение будет эффективно упругим. В среднем энергия прихо­дящих и уходящих частиц не изменяется. Таким образом, предположим, что газ находится в равновесии и поршень, бу­дучи неподвижным, энергии не поглощает. В этом случае час­тица, подлетевшая к поршню с определенной скоростью, уле­тит от него с той же скоростью, причем масса частицы не из­менится.

Если v есть скорость атома, a v>xсоставляющая скорости вдоль оси х, то импульс «к поршню» равен mv>x, но раз частица «отражается», то импульс «от поршня» равен той же величине; значит, за одно соударение поршню сообщается импульс 2mv>x.

Нужно теперь подсчитать число соударений атома за 1 сек; для этого можно взять любой промежуток времени dt, а потом разделить число соударений на dt. Много ли атомов попадает за это время в цель? Предположим, что в объеме Vзаключено N атомов, т. е. в каждом единичном объеме имеется n= N/Vатомов. Теперь заметим, что за время tдостигнут поршня не все частицы, движущиеся к поршню с заданной скоростью, а только те, которые оказались достаточно близко от него. Если частицы были очень далеко, то, хотя они и стремятся к поршню, к сроку они не успеют. Таким образом, за время tо поршень ударятся лишь те частицы, которые в начальный момент были не дальше чем на расстоянии v>xtот него. Следо­вательно, число соударений за время tравно числу атомов, находящихся на расстоянии, не превышающем v>xt, а поскольку площадь поршня равна А, то атомы, которые со временем по­падут в цель, занимают объем Av>xt. Ачисло атомов, попавших в цель, равно произведению объема на число атомов в единич­ном объеме nv>xAt


стр.

Похожие книги