Квантовая вселенная. Как устроено то, что мы не можем увидеть - страница 26

Шрифт
Интервал

стр.

Вывод принципа неопределенности Гейзенберга из теории циферблатов

Вместо того чтобы начать с частицы в определенной точке, подумаем лучше о ситуации, когда мы лишь примерно знаем, где находится частица, но точное ее местоположение неизвестно. Если она где-то в небольшой области пространства, нужно представить ее в виде ряда циферблатов, занимающих всю эту область. В каждой его точке будет находиться по циферблату, и эти циферблаты отразят вероятность, с которой частицу можно найти в этой точке. Если мы возведем в квадрат длины всех стрелок этих циферблатов в каждой точке и сложим, то получим 1, то есть вероятность найти частицу где-то в этой области равна 100 %.

Через некоторое время мы воспользуемся собственными квантовыми правилами для серьезных вычислений, но сначала вынуждены признаться, что забыли упомянуть важное дополнение к правилу поворота стрелок. Мы не хотели вводить его раньше, потому что это чисто техническая деталь, но, если игнорировать ее при вычислении реальных вероятностей, правильных ответов не получим. Относится эта деталь к тому, что написано в конце предыдущего абзаца.

Если начать с одиночного циферблата, стрелка должна иметь длину 1, потому что частица должна находиться в месте расположения циферблата со 100 %-ной вероятностью. Наше квантовое правило гласит: чтобы описать положение частицы в какой-то момент будущего, мы должны переместить циферблат во все точки Вселенной, соответственно тому, как частица может прыгнуть из своего текущего местоположения. Естественно, мы не в силах сделать так, чтобы все стрелки циферблатов имели длину 1, потому что тогда вся интерпретация вероятности рушится. Представьте, например, что частица описывается четырьмя циферблатами, так как находится в четырех разных местах. Если стрелка каждого циферблата имеет длину 1, то вероятность того, что частица находится в любой из четырех позиций, будет равняться 400 % – очевидно, что это нонсенс. Чтобы решить эту проблему, мы должны уменьшать циферблаты, а не только двигать их против часовой стрелки. Это «правило уменьшения» гласит, что после того, как все новые циферблаты будут порождены, каждый из них должен быть разделен на квадратный корень из общего количества часов[11]. Для четырех часов это значит, что каждую стрелку нужно разделить на √4, то есть стрелка каждого циферблата будет иметь длину ½. Отсюда следует: вероятность того, что частица будет найдена на месте любого из четырех циферблатов, равна (½)2 = 25 %. Таким простым способом мы можем убедиться, что вероятность нахождения частицы где-либо всегда будет 100 %-ной.

Конечно, количество возможных положений может быть бесконечным, так что циферблаты могут оказаться и нулевого размера. Это вызывает тревогу, но математика справится. Для наших целей мы всегда будем считать, что число циферблатов конечно и нам никогда не будет нужно знать, насколько уменьшается каждый циферблат.

Вернемся к предположению, что Вселенная содержит единственную частицу, положение которой точно не известно. Следующий раздел можете воспринимать как небольшую математическую задачу – следить за ходом мысли сначала окажется сложно (тогда попробуйте перечитать), но если вы сможете понять, что происходит, то поймете и то, как возникает принцип неопределенности. Для простоты допустим, что частица движется в одномерном пространстве, то есть находится где-то на прямой линии. Более реалистичный пример для трех измерений не отличается фундаментально, зато его сложнее изобразить. На рис. 4.3 мы сделали зарисовку ситуации одномерного движения, изобразив частицу линией из трех циферблатов. Однако нужно представить, что их намного больше – по одному в каждой точке, где может находиться частица. Просто нарисовать такое количество было бы очень трудно. В этой группе циферблатов, соответствующей исходному положению частицы, циферблат 3 находится слева, а циферблат 1 – справа. Итак, в этой ситуации мы знаем, что частица в начальный момент находится где-то между циферблатами 1 и 3. Ньютон сказал бы, что она останется между циферблатами 1 и 3, если с ней ничего не делать, но как насчет квантового правила? Здесь-то и начинается самое интересное: мы поиграем с правилами циферблатов, чтобы ответить на этот вопрос.


стр.

Похожие книги