Квантовая вселенная. Как устроено то, что мы не можем увидеть - страница 28

Шрифт
Интервал

стр.

такой циферблат, стрелка которого будет микроскопической, потому что почти все циферблаты будут отменять друг друга.

Такое «аннулирование циферблатов», разумеется, относится и к более реалистическому случаю, когда мы принимаем во внимание абсолютно все точки, лежащие в области между точками 1 и 3. К примеру, точка, лежащая на ⅛ пути от точки 1, дает циферблат со стрелкой на 9 часов, в то время как точка, лежащая на ⅜ пути, указывает на 3 часа – и снова они отменяют друг друга. В суммарном итоге оказывается, что циферблаты, соответствующие всем возможным для частицы маршрутам из любой точки поля в точку Х, отменяют друг друга. Аннулирование показано в правом углу рисунка. Стрелки соответствуют часовым стрелкам, прибывающим в Х из различных точек исходной области.

В результате сложения всех этих стрелок они отменяют друг друга. Это основной момент, который нужно усвоить.

Итак, повторим: мы сейчас показали, что, если исходная группа циферблатов достаточно велика и точка Х достаточно далека, то для каждого циферблата, прибывающего в Х со стрелкой на 12 часов, найдется другой циферблат со стрелкой на 6 часов, отменяющий предыдущий. Для каждого циферблата со стрелкой на 3 часа найдется другой со стрелкой на 9 часов, отменяющий первый, и т. д. Эта массовая отмена подразумевает, что на самом деле нет практически никаких шансов найти частицу в точке Х. Звучит это очень интересно и вдохновляюще, так как кажется, что описание соответствует неподвижной частице. Начав со смехотворного на вид предположения о том, что частица может перемещаться из любой точки пространства в любое другое место Вселенной за очень короткий срок, мы обнаруживаем, однако, что это не так, если начать с группы циферблатов. В ситуации, когда все циферблаты интерферируют друг с другом, частица практически не имеет возможности сдвинуться далеко от исходного положения.

Этот вывод, по словам профессора Оксфордского университета Джеймса Блайни, стал результатом «неконтролируемой квантовой интерференции». Для этого явления и соответствующей ему взаимной отмены циферблатов точка Х должна быть достаточно далека от исходной области, – настолько, чтобы циферблаты могли совершить достаточное количество оборотов. Почему? Потому что если точка Х расположена слишком близко, то стрелки часов, возможно, не успеют сделать даже один оборот, а следовательно, не будут отменять друг друга столь эффективно. Представим, например, что расстояние между циферблатом в точке 1 и точкой Х не 10 единиц, а 0,3 единицы. Теперь стрелка циферблата на передней стороне области повернется меньше, чем в предыдущем случае, совершая всего 0,3² = 0,09 оборота, и укажет на начало второго. Аналогично стрелка циферблата из точки 3 на задней стороне области совершит 0,5² = 0,25 оборота и укажет на 3 часа. Соответственно, все циферблаты в Х укажут на что-то между часом и тремя, то есть больше не отменяют друг друга, а складываются в один большой циферблат, указывающий приблизительно на 2 часа. Все это говорит о том, что существует довольно весомый шанс нахождения частицы в местах, расположенных вблизи от исходной области, но все же вне ее. Под «вблизи» мы понимаем расстояние, недостаточное для того, чтобы получить по меньшей мере один оборот стрелки часов. Все это уже намекает на принцип неопределенности, но по-прежнему выглядит довольно туманно, поэтому давайте разберемся, что именно мы понимаем под «достаточно большой» исходной областью и «достаточно удаленной» от него точкой.

Вслед за Дираком и Фейнманом мы сделали предположение, что, если частица массой m проходит расстояние x за время t, величина поворота стрелок будет пропорциональна действию, то есть mx² / t. Однако слова «пропорциональна» недостаточно, если нужно рассчитать реальные величины. Нужно точно знать, чему равен поворот стрелок. В главе 2 мы говорили о законе всемирного тяготения Ньютона и для точных количественных прогнозов ввели понятие гравитационной постоянной Ньютона, которая определяет величину силы гравитации.

С помощью добавления в уравнение постоянной Ньютона можно подставлять числа в уравнение и вычислять характеристики реальных физических явлений, например период обращения Луны по орбите или маршрут движения космического корабля «Вояджер-2» по Солнечной системе. Но нам нужно что-то подобное и для квантовой механики – такая природная константа, которая «задает масштаб» и позволяет нам взять величину действия и выдать точное предсказание того, сколько оборотов должны сделать часовые стрелки при перемещении частицы на конкретное расстояние из исходного положения за заданное время. Эта константа называется постоянной Планка.


стр.

Похожие книги