Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - страница 43

Шрифт
Интервал

стр.

-частичной плотности вероятности ρ>k:





He следует думать, однако, что этот оператор соответствует некоторой наблюдаемой физической величине. Его роль в квантовой теории состоит в том, что он характеризует состояние N-электронной системы в той мере, в какой это необходимо для определения ожидаемого значения любой физической величины, представленной суммой k-электронных операторов. При этом последние не зависят от состояния рассматриваемой многоэлектронной системы. Среднее значение оператора

для некоторого k-электронного состояния определяет заселенность этого состояния. Собственные функции
оператора
называются функциями "естественных" k-частичных состояний, а собственные значения — естественными заселенностями n>(k). Функции
определяющие одночастичные состояния с заселенностями
называются естественными спин-орбиталями и удовлетворяют уравнению

(4.20)

Бесспиновые ψ>ν(r), удовлетворяющие аналогичному уравнению на собственные значения матрицы плотности ρ(r|r') называются "естественными" орбиталями.

В качестве примера рассмотрим молекулу водорода Н>2. Естественные молекулярные орбитали для этой молекулы определяются исключительно из соображений симметрии (если их ищут в виде линейной комбинации двух атомных 1s-орбиталей) и классифицируются на симметричную (g) и антисимметричную (u) МО:

В то же время естественные заселенности связывающего (ψ>g) и разрыхляющего (ψ>u) одноэлектронных состояний зависят от способа построения полной двухэлектронной функции молекулы Н>2 из одноэлектронных (табл. 3).

Таблица 3. Естественные заселенности в молекуле H>2[35]

Матрицу плотности ρ(r|r'), как и матрицы плотности более высокого порядка, можно представить через "естественные" заселенности и соответствующие естественные функции в виде естественного разложения:

(4.21)

Такое представление матрицы плотности обобщает приведенное выше выражение (4.6) для одноэлектронной матрицы плотности "чистого" состояния одного электрона с определенной ψ-функцией. В случае многоэлектронной системы отдельному электрону уже нельзя сопоставить какую-либо функцию ψ(r). Состояние электрона в многоэлектронной системе является "смешанным" и описывается одноэлектронной матрицей плотности ρ(r|r') или набором функций ψ(r) и соответствующих им "чистых" состояний. При этом вероятность пребывания электрона в состоянии, определяемом функцией ψ, характеризуется естественной заселенностью n.

Вследствие антисимметричности многоэлектронной функции Ψ(x>1,...,x>N) относительно перестановок

естественные заселенности орбиталей лежат в пределах 0≤n≤2, т. е. каждое бесспиновое состояние может быть занято не более чем двумя электронами, причем этим двум электронам сопоставляются спин-орбитали с разными спиновыми множителями, а именно ψ(r)α(σ) и ψ(r)β(σ). Нормировка одноэлектронной матрицы плотности на число электронов в системе (N) означает, что сумма всех естественных заселенностей равна N.

Многоэлектронные функции Ψ(x>1,...,x>N) содержат очень большую информацию, значительная часть которой, как правило, не представляет физического интереса. Дело в том, что операторы, соответствующие наблюдаемым физическим величинам, являются суммами одно- и двухчастичных операторов

(4.22)


Каждый из операторов

>i действует только на одну переменную (x>j), и каждый из операторов
>ij действует только на две переменные (х>i и х>j. Поэтому при вычислении ожидаемых значений одноэлектронные физические величины определяются исключительно одноэлектронной, а дьухэлектронныефизические величины — двухэлектронной матрицей плотности. Последняя заключает в себе фактически всю необходимую информацию о состоянии многоэлектронной системы.

Из всего сказанного выше можно сделать вывод, что использование формализма матрицы плотности в. квантовохимических расчетах должно существенно упрощать их физическую и химическую интерпретацию.

Наиболее полное и строгое изложение метода матрицы плотности в теории молекул дано в монографии М. М. Местечки на [17].

Канонические и локализованные молекулярные орбитали

Молекулярные орбитали f>iопределяются обычно как собственные функции некоторого одноэлектронного гамильтониана


стр.

Похожие книги