Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - страница 41

Шрифт
Интервал

стр.

;

б) с другой стороны, как показал Фок, функция Уолера-Хартри может быть домножена на многоэлектронную спиновую функцию, являющуюся собственной функцией оператора к в то время как детерминантная функция Слэтера в общем случае не удовлетворяет этому условию. Второе из указанных обстоятельств обусловливает преимущество функции Уолера-Хартри, особенно при обобщении метода ССП на системы с ненулевым полным спиновым моментом. Такие системы широко изучаются в современной химии и биохимии как экспериментально, так и теоретически, поэтому интерес к методу Уолера-Хартри в последнее время возрос. Плодотворность идеи Фока об использовании вариационного начала также проявилась в полной мере в последние годы, когда были развиты методы прямой минимизации функционала электронной энергии.

В 1930-1940 гг. метод Хартри-Фока использовался в основном при расчетах атомных структур, что объясняется возможностью введения дополнительных упрощений, связанных со сферической симметрией задачи (приближение центрального поля).

В 1951 г. ученик Малликена Рутан сформулировал метод Хартри-Фока для молекулярных систем с замкнутыми оболочками [75]. Особенность метода Рутана, отличающая его от исходного метода ССП, состояла в представлении молекулярных орбиталей в виде линейной комбинации атомных. Таким образом, идеи, разработанные в 1920-1930 гг. в теориях Хунда-Малликена, Хартри-Фока, Леннард-Джонса и Слэтера, нашли свое выражение в рамках единого формализма.

С внедрением в начале 50-х годов в практику квантовохимических исследований быстродействующих ЭВМ начался качественно новый этап развития теории строения молекул. Основное внимание исследователей сосредоточилось не столько на качественных аспектах теории химической связи, сколько на развитии методов количественного расчета молекулярных свойств. Однако рассмотрение этой стороны развития теории не входит в нашу задачу. Мы ограничимся в дальнейшем обсуждением лишь некоторых новых результатов, относящихся к описанию структуры химической связи, а также квантовомеханической интерпретации понятий классической теории химического строения.

Глава 4. Современные методы исследования структуры химической связи

Матрица плотности и некоторые замечания о квантовомеханическом описании одкозяектронных и многоэлектронных состояний

В квантовой механике состояние частицы с энергией е описывается волновой функцией ψ(r), которая удовлетворяет уравнению Шредингера

(4.1)

При этом любому физическому состоянию частицы можно сопоставить множество волновых функций, отличающихся друг от друга множителем exp(iα) с вещественным параметром а, не зависящим от координат частицы. Иными словами, волновая функция ψ'(r) = exp (iα)ψ(r), и в частности ψ'(r) = — ψ(r) (α = π), так же как и ψ(r), будет собственной функцией гамильтониана с тем жезначением энергии ε. Если волновая функция ψ(r) нормирована на единицу:

(4.2)

то такому же условию нормировки будет удовлетворять волновая функция ψ'(r). Математические ожидания всех физических величин, представленных операторами

и вычисляемых как интегралы

(4.3)

также не меняются при рассматриваемом преобразовании. Именно это обстоятельство и доказывает, что волновые функции ψ и ψ' описывают одно и то же состояние частицы.

Действие оператора

на ψ(r) определяется по формуле

(4.4)


Функция μ в (4.4) называется ядром оператора

в его интегральном представлении. При таком представлении операторов
легко видеть, что математическое ожидание

(4.5)

определяется фактически не функцией ψ(r), а произведением двух ψ-функций

(4.6)

которое называется матрицей плотности для частицы, нахо дящейся в определенном состоянии. Строго говоря, матрица плотности ρ(r|r') не может быть матрицей в обычном смысле этого слова, если координаты r, нумерующие ее строки, и координаты r', нумерующие ее столбцы, не дискретны. Тем не менее термин "матрица плотности" для ρ(r|r') является общепринятым.

Матрица плотности становится истинной матрицей, если она представлена в некотором базисе функций X>k(r), т. е. определяется совокупностью матричных элементов P>kl, по которым можно воспроизвести ρ(


стр.

Похожие книги