Космические двигатели будущего - страница 7

Шрифт
Интервал

стр.

Исследуются также схемы газофазных двигателей, в которых вообще отсутствует вынос делящегося вещества. Схема тепловыделяющего элемента такого двигателя приведена на рис. 4. Двигатель представляет собой капсулу с двойными стенками, выполненную из прозрачного тугоплавкого материала (например, лейкосапфира). Внутри капсулы помещают делящееся вещество, которое в рабочих условиях находится в газовой фазе. Между стенками для их охлаждения прокачивается водород. Поскольку и стенки и водород прозрачны для излучения, выделяющаяся ядерная энергия в виде излучения выходит наружу, где нагревает тот же водород, но уже с добавками лития. Из таких тепловыделяющих элементов набирают активную зону реактора.

Реализация этой схемы тормозится отсутствием подходящих материалов для прозрачных стенок, стойких в контакте с газообразным ураном в условиях высоких температур и больших радиационных потоков.

При удержании плазмы в магнитной «бутылке» возможна реализация термоядерного двигателя, использующего реакцию синтеза ядер. Однако более перспективными способами использования термоядерного синтеза считаются импульсные схемы, которые будут рассмотрены несколько позже.


Рис. 4. Ячейка активной зоны гетерогенного газового ЯРД: 1 — сапфировые стенки, 2 — урановая плазма, 3 — рабочее тело


Электрические реактивные двигатели. Электрический реактивный двигатель представляет собой устройство для преобразования электрической энергии, вырабатываемой на борту ракеты, в кинетическую энергию отбрасываемой массы. Самый простой способ преобразования осуществляется в так называемых электротермических двигателях, когда рабочее тело нагревается электрическим током и затем ускоряется в реактивном сопле, как в обычных тепловых двигателях.

Хотя при электрическом нагреве могут быть получены очень высокие температуры, более предпочтительными являются двигатели с электромагнитным ускорением рабочего тела. В таких двигателях в кинетическую энергию преобразуется энергия электромагнитного поля и, следовательно, в них кет термодинамических ограничений на величину скорости истечения и на КПД преобразования энергии.

По тем электромагнитным силам, которые используются для ускорения рабочего тела, различают ионные, плазменные и высокочастотные двигатели. В ионных двигателях ускорение происходит за счет взаимодействия электрического поля с ионами или заряженными макрочастицами рабочего тела. В плазменных двигателях используется взаимодействие тока с магнитным полем. И наконец, в высокочастотном двигателе ускорение осуществляется полем бегущей электромагнитной волны. В электрических двигателях относительно несложно получить сколь угодно большие скорости истечения, вплоть до скоростей, близких к скорости света (например, если использовать в качестве двигателя ускорители элементарных частиц).

Из-за отсутствия легких накопителей электрической энергии (аккумуляторов) использование принципа электромагнитного ускорения имеет смысл лишь в сочетании с преобразованием ядерной энергии в электрическую. В настоящее время не известны сколь-нибудь эффективные прямые способы такого преобразования, и поэтому использование автономных электрических двигателей всегда рассматривается в сочетании с бортовой атомной электростанцией, работающей по тепловому циклу.

Принципиальная схема космической энергоустановки включает в себя, как и любая наземная электростанция, источник тепла (в данном случае ядерный реактор), тепловую машину (преобразующую подведенное тепло в электроэнергию) и холодильник (устройство, отводящее отработанное тепло). Самым существенным отличием космических энергоустановок от их наземных аналогов является способ отвода тепла. В космическом пространстве сброс тепла возможен только излучением.

Насколько это серьезное обстоятельство, можно представить себе из следующего примера. Для излучения тепла в 1 кВт при средней температуре теплосброса в наземных электростанциях 50 °C требуется площадь излучающей поверхности холодильника 1,64 м>2. Для электрического двигателя мощностью 100 кВт, что соответствует мощности ЖРД с тягой всего около 30 кгс, и общим КПД двигательной системы 20 % при этой же температуре потребуется холодильник площадью 1300 м


стр.

Похожие книги