Космические двигатели будущего - страница 6

Шрифт
Интервал

стр.

(удельная энергия этой реакции соответствует скорости истечения около 30 км/с).

Однако из-за высокой склонности свободных радикалов к слиянию в устойчивую молекулу их накопление и хранение возможно лишь при температурах, близких 0 К, когда резко снижаются скорости химических реакций. Но и при 0 К остается возможность для так называемых туннельных реакций. Поэтому в чистом виде свободные радикалы хранить невозможно. Предполагается вмораживать радикалы в нейтральную матрицу (например, атомарный водород помещать в кристаллическую решетку твердого водорода), при этом концентрация свободных радикалов принципиально не может превосходить 50 %.

Даже смесь из 10 %-ного атомарного водорода и 90 %-ного молекулярного водорода позволит получить скорость истечения около 5 км/с при температуре всего 1200 К. За более чем 20 лет работы над этой проблемой удалось добиться концентрации свободных радикалов, не превышающей десятые доли процента. Тем не менее те преимущества, которые может дать применение свободных радикалов, стимулируют дальнейшие исследования.

Ядерные тепловые двигатели. Наиболее перспективным направлением улучшения характеристик тепловых ракетных двигателей представляется использование энергии ядерных реакций. Как уже указывалось, ядерные реакции целесообразно применять лишь в схемах с разделенными источниками энергии и отбрасываемой массой. Ядерное горючее здесь выступает в качестве источника тепла, которое передается рабочему телу.

В простейшем ядерном ракетном двигателе, как и в реакторах атомных электростанций, активная зона состоит из тепловыделяющих элементов, которые представляют собой соединения урана или плутония, заключенные в оболочку. В результате ядерного распада горючего они нагреваются. Жидкое рабочее тело с помощью насосов подается в активную зону, где оно, отбирая тепло от активной зоны, испаряется, температура его повышается, а в реактивном сопле происходит увеличение его скорости.

Наивысшая температура рабочего тела ограничена температурой плавления тепловыделяющих элементов, а с учетом необходимого температурного перепада (для теплопередачи) и химической стойкости материалов не может превышать 2000 К. Так как в химических двигателях температура рабочего тела составляет 3000–3500 К, то единственным способом увеличения скорости истечения в ядерных двигателях с твердой активной зоной по сравнению с химическими является снижение молекулярного веса рабочего тела. Минимальным молекулярным весом обладает водород (2 г/моль), для него возможно получение скорости истечения 8–9,5 км/с. Это верхний предел для ядерных тепловых ракетных двигателей с твердой активной зоной. Близкие к этим значениям характеристики были получены в США на экспериментальном ядерном двигателе «Нерва».

Для дальнейшего повышения температуры рабочего тела в ядерных двигателях необходим переход к реакторам, в которых делящееся вещество находится в газообразной фазе. Однако при разработке этих газофазных ядерных реакторов возникает ряд проблем. Для самоподдерживающейся ядерной реакции необходимо, чтобы в реакции участвовала масса ядерного горючего, не меньшая критической. Поскольку плотность ядерного горючего в газообразной фазе при высокой температуре мала, для достижения критической массы нужны высокие давления и большие объемы активной зоны.[4]

Вторая трудноразрешимая проблема разработки газофазных реакторов — это вынос непрореагировавшего ядерного горючего вместе с рабочим телом, что сильно снижает энергетические характеристики ракеты.

В зависимости от того, перемешивается ли рабочее тело с ядерным горючим или отделено от него, различают схемы соответственно гомогенных и гетерогенных двигателей. Принципиальным недостатком гомогенных схем, который ставит под сомнение их целесообразность, является большой вынос урана вместе с рабочим телом — около 100 кг на 1 т рабочего тела.

В гетерогенных схемах можно существенно снизить вынос ядерного горючего или даже свести его к нулю. В объеме реактора с помощью соленоидов создается сильное магнитное поле, нарастающее к краям. Конфигурация поля при этом образует так называемую магнитную «бутылку». Магнитная «бутылка» обладает тем свойством, что вещество в состоянии плазмы может удерживаться в ней достаточно долго без наличия каких-либо твердых стенок. В результате ядерных реакций уран переходит в состояние плазмы и магнитное поле удерживает его от смешения с рабочим телом (водородом). Последнее обтекает магнитную «бутылку» с ядерным горючим, отнимая от нее тепло. Для того чтобы не происходило перемешивания, должно соблюдаться условие ламинарного обтекания. В этом случае эффективный теплообмен между активной зоной и рабочим телом возможен лишь излучением. Так как водород прозрачен для излучения урановой плазмы, в него добавляют литий в количестве 1–2 %, который, ионизуясь, сильно поглощает излучение. В такой схеме ожидается получение скорости истечения 20–30 км/с при выносе урана менее 2 % относительно расхода рабочего тела.


стр.

Похожие книги