Прямого сравнения
эффективности своего устройства с
другими альтернативными источниками
энергии вроде солнечных элементов
экспериментаторы благоразумно не делают.
А она, очевидно, намного хуже. Даже в
дождливую погоду пробившийся сквозь
облака слабый рассеянный свет способен
давать электричество. Но новое
устройство сможет работать и в полной
темноте. И кто знает, быть может, оно
все-таки найдет применение для
подзарядки аккумуляторов удаленных
датчиков в дождливой местности или возле
моря, где нет недостатка в брызгах от
набегающих волн. ГА
8
миллиметров устойчивости
Новую
технологию для быстрой печати
удивительно тонких линий разработали
химики из Принстонского университета.
Теперь можно печатать линии в десять раз
тоньше и на несколько порядков быстрее,
чем обычно, что должно дать толчок
развитию гибкой электроники и произвести
революцию в технологии производства
дисплеев.
В основе метода лежит
очень старая, известная с 1917 года
техника электродинамических струй, при
которой жидкость из сопла вытягивается
сильным электрическим полем. Главной
особенностью таких струй является их
неустойчивость, из-за которой струя либо
быстро разбивается на мелкие капельки,
либо начинает извиваться - бить в разные
стороны как кнут. Эти неустойчивости
давно используются в различных
технологических процессах, например,
чтобы свивать волокна или наносить
ровный слой краски. Однако природа
асимметричной неустойчивости или
"неустойчивости биения" до сих пор
оставалась неясной.
Ученые
обратили внимание на то, что при
возникновении асимметричной
неустойчивости ток по струе заметно
меньше полного тока в цепи. Это
заставило предположить, что газ вокруг
струи ионизируется и дополнительный ток
течет по окружающей струю плазме, влияя
на плотность распределения зарядов на
поверхности струи и заставляя ее
извиваться. Эта гипотеза позволила
развить теорию асимметричной
неустойчивости электродинамических струй
и найти параметры, при которых струи
должны быть устойчивы. Недавно ученые
опубликовали свои выкладки в журнале
Physical Review Letters.
Теория
блестяще подтвердилась практикой. В ходе
эксперимента удалось получить струи
толщиной в сто нанометров, длиной до 8
миллиметров из сопла диаметром в
полмиллиметра (то есть в пять тысяч раз
толще струи). Длинная струя и широкое
сопло позволяют избежать засоров и
довести скорость печати линий до
нескольких метров в минуту. Раньше линии
такой толщины можно было получать только
травлением или электронным пучком и не
быстрее чем примерно микрон в
минуту.
Все области приложения
новой технологии сейчас даже трудно
представить. Печать проводящими
полимерами позволит создавать большие
электронные схемы на гибкой основе,
крупные дисплеи и сенсоры, напечатанные,
например, прямо на крыле самолета.
Печать быстро сохнущими полимерами даст
нам трехмерные решетки для фотонных
кристаллов, быстро останавливающие кровь
тампоны и повязки и многое другое.
Ученые уже запатентовали свою
технологию и лицензировали ее химической
компании Vorbeck Materials, так что
можно надеяться, что коммерческие
продукты на ее основе не заставят себя
ждать. ГА
В черной-черной
комнате…
Новый "рекорд
черноты" установили физики из
Университета Райса. Разработанное ими
покрытие из редко расположенных
углеродных нанотрубок отражает лишь 45
тысячных процента падающего
света.
Природа не любит ничего
идеального. Самая лучшая зеркальная
поверхность из серебра поглощает около
двух процентов падающего света, а самая
черная сажа отражает более четырех
процентов. И чтобы приблизиться к
идеалу, ученым приходится идти на
всевозможные ухищрения. Черные покрытия
нужны, например, для повышения
эффективности солнечных коллекторов и
различных фотоприемников. Без них трудно
создать хороший телескоп или любой
другой оптический прибор из-за
рассеянного оптикой излучения, которое
нужно собрать зачерненными стенками,
чтобы оно не мешало.
Предыдущий
рекорд черноты пять лет удерживали
исследователи из Лондонской национальной
физической лаборатории. Их покрытие из
сплава никеля и фосфора, испещренное
специальными кратерами, отражало 0,16%
падающего излучения. Новое покрытие,
почти вчетверо превысившее прежний
рекорд, в сто раз "чернее" самой черной
краски. Оно представляет собой редкий
лес из углеродных нанотрубок диаметром
8–10 нм и длиной до миллиметра, которые
расположены на расстоянии порядка 50 нм
друг от друга. Длина трубок выбрана так,
чтобы поверхность обладала определенной
шероховатостью. Такое покрытие
получается очень пористым и лишь на 3–5%
состоит из углерода - в остальном это
пустоты. Поэтому световая волна
проникает в него почти не встречая
препятствий на границе, а затем
поглощается углеродом.