Точно так же можно рассчитать значение избыточной адсорбции для любой концентрации и заполнить таблицу (табл. 3.1.).
Таблица 3.1. Значение избыточной адсорбции для любой концентрации
1
4
2
3
Данные, приведенные в таблице, позволяют построить изотерму адсорбции общий вид которой представлен на рис. 3.3 . По мере увеличения концентрации адсорбция возрастает вначале резко, затем все медленнее, асимптотически приближаясь к некоторой величине, называемой предельной адсорбцией. Существование предельного значения адсорбции понятно, так как поверхность раствора имеет определенную площадь и при достижении определенной концентрации ПАВ в растворе она оказывается полностью занятой молекулами ПАВ. Поскольку адсорбция мономолекулярна (т.е. однослойна), дальнейшее увеличение концентрации ПАВ в растворе ничего не может изменить в поверхностном слое.
2.3.3.
ПОВЕРХНОСТНАЯ АКТИВНОСТЬ. ПРАВИЛО ДЮКЛО-ТРАУБЕ
Из уравнения Гиббса следует, что характеристикой поведения вещества при адсорбции является величина производной , однако ее значение изменяется при изменении концентрации (см. рис. 3.2). Чтобы придать этой величине вид характеристической постоянной, берут ее предельное значение (при ). Эту величину П.А. Ребиндер (1924) назвал поверхностной активностью g.
Чем в большей степени уменьшается поверхностное натяжение с увеличением концентрации адсорбируемого вещества, тем больше поверхностная активность этого вещества, и тем больше его гиббсовская адсорбция.
Поверхностную активность можно определить графически как отрицательное значение тангенса угла наклона касательной, проведенной к кривой = f(c) в точке ее пересечения с осью ординат.
Таким образом, для ПАВ:
Было установлено следующее.
1. Поверхностная активность (g) возрастает с уменьшением полярности вещества. Поэтому поверхностная активность органических кислот больше величины g для их солей, например:
Этим же объясняется инактивность сахарозы, молекула которой наряду с неполярным углеводородным каркасом имеет много полярных групп, поэтому в молекуле имеется баланс полярной и неполярной части.
2. В гомологическом ряду прослеживаются четкие закономерности в изменении поверхностной активности (g): она возрастает по мере увеличения длины углеводородного радикала.
На основании большого экспериментального материала в конце XIX в. Дюкло и Траубе сформулировали правило:
Поверхностная активность предельных жирных кислот в водных растворах возрастает в 3-3,5 раза при удлинении углеводородной цепи на одно звено (группу
).
Рис. 3.4
На рис. 3.4 приведены изотермы поверхностного натяжения для ряда кислот.
Итак,
Вы помните, что, зная = f(с), можно построить изотерму гиббсовской адсорбции = f(c). На рис. 3.5 представлены изотермы адсорбции для пяти рассматриваемых кислот.
Анализ изотерм адсорбции выявляет следующие закономерности:
То, что во всех случаях стремится к , объяснимо, так как адсорбция мономолекулярна. Но чем можно объяснить, что максимальная адсорбция внутри гомологического ряда не зависит от длины углеводородного радикала? Вероятно, только строго определенным расположением молекул в поверхностном слое.
2.3.4.
ОРИЕНТАЦИЯ МОЛЕКУЛ ПАВ В ПОВЕРХНОСТНОМ СЛОЕ
В 1915 г. американец И. Ленгмюр ввел понятие об ориентации молекул ПАВ в поверхностном слое. Он исходил из того, что молекулы ПАВ состоят из двух частей - полярной группы (например,
) и неполярного углеводородного радикала (R). Это позволило ему сформулировать принцип независимости поверхностного действия, заключающийся в том, что при адсорбции полярная группа, обладающая большим сродством к полярной фазе, втягивается в воду, в то время как неполярный радикал выталкивается в неполярную фазу. Происходящее при этом уменьшение свободной поверхностной энергии ограничивает размеры поверхностного слоя толщиной в одну молекулу. Образуется так называемый мономолекулярный слой. Рассмотрим схему образования такого слоя в зависимости от концентрации ПАВ в растворе (рис. 3.6 ).
При малых концентрациях углеводородные цепи, вытолкнутые в воздух, "плавают" на поверхности воды, тогда как полярная группа погружена в воду (рис. 3.6а), такое положение возможно из-за гибкости углеродной цепи. С ростом концентрации число молекул в поверхностном слое увеличивается, цепи поднимаются. Какие-то из них принимают вертикальное положение (рис. 3.6б). В насыщенном адсорбционном слое поверхность воды оказывается сплошь покрытой "частоколом" из вертикально ориентированных молекул ПАВ (рис. 3.6в), значение поверхностного натяжения в этом случае приближается к значению, характерному для чистого жидкого ПАВ на границе с воздухом.