Исаак Ньютон. Его жизнь и научная деятельность - страница 14

Шрифт
Интервал

стр.

Как раз в тот день, когда Ньютон написал Лейбницу, что не желает более “гоняться за тенью”, он не вытерпел и отправил в Королевское общество новый философский трактат, содержавший исследование цветов тонких пластинок и, в частности, изучение оптических свойств мыльных пузырей. В виде курьеза следует отметить, что в эпоху мимолетного разочарования в философии Ньютон вздумал заняться самым прозаическим делом, а именно посадкою яблонь с целью производства фруктового кваса (сидра). Но такова была натура Ньютона, что он и к яблокам относился лишь с научной точки зрения. Сохранилось письмо, в котором он пишет о посадке яблонь и производстве сидра в таком тоне, как будто речь идет о всемирном тяготении.

Что касается мыльных пузырей, то ими занимались еще до Ньютона сначала Бойль, а потом Гук. Гук правильно описал основные явления. Он также расщеплял пластинки талька на чрезвычайно тонкие слои и убедился, что получающиеся цвета находятся в некоторой зависимости от толщины пластинок. Одна из полученных им пластинок имела желтый отлив, другая – голубой, а сложив обе вместе, он получил темно-пурпуровый цвет. Гук нашел Даже предел толщины, а именно убедился, что его пластинки имеют толщину менее одной двенадцатитысячной доли дюйма. Далее этого он не пошел и даже не мог представить себе метод, позволяющий точное измерение столь тонких пластинок. Для этого понадобился экспериментальный гений Ньютона. Ньютон взял двояковыпуклое стекло чрезвычайно малой кривизны, то есть почти плоское, а именно такое, что выпуклая поверхность составляла часть поверхности шара, имеющего радиус в пятьдесят футов. Это стекло он прижал винтами к плоской поверхности другого плосковыпуклого стекла. Таким образом, между обоими стеклами получился чрезвычайно тонкий слой воздуха, всего тоньше подле центра и толще к краям. Осветив этот прибор ярким светом, Ньютон увидел ряд концентрических темных и светлых колец; но, зная радиус выпуклого стекла, он мог без труда вычислить толщину воздушного слоя в любом месте. При освещении однородным светом, например красным, получались темные и красные кольца; белый свет давал темные кольца поочередно с радужными, но цвета радужных колец оказались не совсем такими, как в спектре.

Повторяя опыты, Ньютон увидел, что наименее преломляемые, то есть красные лучи давали самые широкие кольца, а фиолетовые – наиболее узкие. При освещении белым светом получались поэтому: в середине фиолетовое кольцо, потом синее и так далее до красного; затем темное, потом опять фиолетовое и так далее. Удовлетворительное объяснение этому явлению могла дать только теория волнообразного движения. Что касается Ньютона, он для объяснения цветов тонких пластинок должен был придумать новую гипотезу.

Здесь уместно сказать, почему Ньютон не соглашался принять теорию волнообразного движения и так упорно отстаивал свою гипотезу истечения, вынуждавшую его для объяснения самых простых явлений придумывать все новые и новые свойства, которыми он наделял светоносные частички. Несомненно, что главным препятствием к принятию теории волнообразного движения казалось Ньютону следующее обстоятельство. “Если свет распространяется подобно звуку, – рассуждал Ньютон, – то он, очевидно, должен обладать способностью огибать тела, и, подобно тому как из-за перегородки мы слышим звук, следует ожидать, что и световые лучи обогнут перегородку и зайдут внутрь тени. Но опыт показывает, что лучи никогда не загибаются, всегда идут по прямым и тень получается по законам прямолинейной перспективы”. Это рассуждение было вполне правильно и аналогично с тем, которому следовал Ньютон, когда отверг гипотезу об искривлении лучей, прошедших сквозь призму. Но, по несчастью, на этот раз Ньютон не сделал надлежащих опытов. Опыт убедил бы его, что есть случаи, когда лучи загибаются внутрь тени, и что для этого надо только взять достаточно тонкие предметы и узкие щели, так как волны света сами по себе имеют чрезвычайно малую толщину, а потому не могут огибать предметов сколько-нибудь большого размера, подобно тому как это возможно для звуковых волн.


стр.

Похожие книги