S*1 + S*1 = S + S = 1
Значение выражения (4) будет меньше 1, если p<> S. В частности при p = 0 или p = 1 оно составит 0, как это видно из выражения (3).
Этот пример показывает важный момент, который заключается в том, что мы можем оценить объем информации, содержащейся в сообщении, только в контексте всего набора возможных сообщений. Чтобы подсчитать количество информации, передаваемой некоторым полученным сообщением, необходимо знать в частности вероятность, с которой это сообщение может быть отправлено. Количество информации в любом сообщении не зависит от других сообщений, которые были в прошлом или могут быть в будущем, не связано со временем или продолжительностью и не зависит от каких-либо иных событий, так же как результат подбрасывания симметричной монеты не зависит от результата предыдущих подбрасываний или от времени дня, когда это подбрасывание производится.
Кроме того, важно учитывать, что:
«нельзя путать понятие информации с понятием смысла…информация является мерой свободы выбора сообщения… Следует отметить, что при наличии только двух возможных сообщений утверждать, что какое-то сообщение передает какой-то объем [1 бит] информации, неправильно. Понятие информации не применимо к отдельным сообщениям (в отличие от понятия смыла), но применимо к ситуации в целом; при этом единица информации показывает, что в данной ситуации имеется некоторый объем свободы в выборе сообщения, который удобно обозначать как стандартный или единичный объем информации»
(Shannon и Weaver, 1963, с. 9).
Однако действия, которые совершает пользователь при выполнении задачи, можно с большей точностью смоделировать в виде процесса Маркова, в котором вероятность последующих действий зависит от уже совершенных пользователем действий. Тем не менее, для данного рассмотрения достаточно использовать упомянутые вероятности отдельных, единичных событий, при этом будем исходить из того, что все сообщения являются независимыми друг от друга и равновероятными.
Также можно вычислить количество информации, которое передается с помощью устройств, отличающихся от клавиатуры. Если экран дисплея разделен на две области – со словом «Да» в одной области и словом «Нет» – в другой, то один клик, совершенный в одной из областей, будет передавать 1 бит информации. Если имеется n равновероятных объектов, то нажатием на один из них сообщается \log_2 n бит информации. Если объекты имеют разные размеры, то количество информации, сообщаемой каждым из них, не изменяется, но увеличивается время перемещения ГУВ к более мелким объектам (далее мы покажем способ вычисления этого времени). Если объекты имеют разные вероятности, формула остается аналогичной той, которая была дана для случая ввода с клавиатуры разновероятных данных. Различие состоит только в том, что для нажатия клавиши может потребоваться 0.2 с. тогда как для нажатия кнопки, изображенной на экране, в среднем может потребоваться около 1.3 с (без учета времени перемещения руки пользователя с клавиатуры на ГУВ).
В случае голосового ввода информации его информационное содержание можно вычислить, если рассматривать речь как последовательность вводимых символов, а не как непрерывный поток определенного диапазона и продолжительности.
Данный подход к теории информации и ее связи с разработкой интерфейсов является упрощенным. Но даже в такой упрощенной форме, которую мы также использовали при рассмотрении модели GOMS, теория информации может дать нам общий критерий оценки качества интерфейса.
4.3.1. Производительность интерфейса для Хола
Аккуратный подсчет есть путь к знаниям всех существующих вещей и тайных секретов.
Папирусы Рхинда, 1650 г. до н. э.
Аккуратный подсчет есть путь к знаниям всех существующих вещей и тайных секретов.
Полезно подробно рассмотреть пример вычисления среднего количества информации, требуемого для некоего интерфейса. Для этого я снова использую пример интерфейса для перевода температур из одной шкалы в другую. В соответствии с условиями требуется, чтобы количество символов, вводимых в температурный преобразователь, равнялось в среднем 4. Кроме того, по условиям задачи десятичная точка используется однократно в 90 % вводимых данных, а в 10 % – вообще не встречается; знак минус появляется один раз в 25 % данных и совсем не встречается в остальных 75 % данных. Из соображений простоты, а также потому, что не требуется ответ с точностью до 1 %, я буду исходить из того, что все остальные цифры встречаются с одинаковой частотой, и не буду учитывать те 10 % данных, которые не содержат десятичной точки.