Построение рекомендательной системы
Представьте, что вы работаете на сайте Netflix и хотите построить систему, которая будет рекомендовать фильмы для ваших пользователей. На высоком уровне эта задача похожа на задачу с грейпфрутами!
Информация о каждом пользователе наносится на график.
Положение пользователя определяется его вкусами, поэтому пользователи с похожими вкусами располагаются недалеко друг от друга. Предположим, вы хотите порекомендовать фильмы Приянке. Найдите пять пользователей, ближайших к ней.
У Джастина, Джей-Си, Джозефа, Ланса и Криса похожие вкусы. Значит, те фильмы, которые нравятся им, с большой вероятностью понравятся и Приянке!
После того как у вас появится такая диаграмма, построить рекомендательную систему будет несложно. Если Джастину нравится какой-нибудь фильм, порекомендуйте этот фильм Приянке.
Однако в картине не хватает одного важного фрагмента. Вы оценивали, насколько близки вкусы двух пользователей на графике. Но как определить, насколько они близки?
Извлечение признаков
В примере с грейпфрутами мы сравнивали фрукты на основании их размера и цвета кожуры. Размер и цвет — признаки, по которым ведется сравнение. Теперь предположим, что у вас есть три фрукта. Вы можете извлечь из них информацию, то есть провести извлечение признаков.
Данные трех фруктов наносятся на график.
Из диаграммы хорошо видно, что фрукты A и B похожи. Давайте измерим степень их сходства. Для вычисления расстояния между двумя точками применяется формула Пифагора.
Например, расстояние между A и B вычисляется так:
Расстояние между A и B равно 1. Другие расстояния вычисляются аналогично.
Формула расстояния подтверждает то, что мы видим: между фруктами A и B есть сходство.
Допустим, вместо фруктов вы сравниваете пользователей Netflix. Пользователей нужно будет как-то нанести на график. Следовательно, каждого пользователя нужно будет преобразовать в координаты — так же, как это было сделано для фруктов.
Когда вы сможете нанести пользователей на график, вы также сможете измерить расстояние между ними.
Начнем с преобразования пользователей в набор чисел. Когда пользователь регистрируется на Netflix, предложите ему оценить несколько категорий фильмов: нравятся они лично ему или нет. Таким образом у вас появляется набор оценок для каждого пользователя!
Приянка и Джастин обожают мелодрамы и терпеть не могут ужасы. Морфеусу нравятся боевики, но он не любит мелодрамы (хороший боевик не должен прерываться слащавой романтической сценой). Помните, как в задаче об апельсинах и грейпфрутах каждый фрукт представлялся двумя числами? Здесь каждый пользователь представляется набором из пяти чисел.
Математик скажет, что вместо вычисления расстояния в двух измерениях вы теперь вычисляете расстояние в пяти измерениях. Тем не менее формула расстояния остается неизменной.
Просто на этот раз используется набор из пяти чисел вместо двух.
Формула расстояния универсальна: даже если вы используете набор из миллиона чисел, расстояние вычисляется по той же формуле. Естественно спросить: какой смысл передает метрика расстояния с пятью числами? Она сообщает, насколько близки между собой эти наборы из пяти чисел.
Это расстояние между Приянкой и Джастином.
Вкусы Приянки и Джастина похожи. А насколько различаются вкусы Приянки и Морфеуса? Вычислите расстояние между ними, прежде чем продолжить чтение.
Сколько у вас получилось? Приянка и Морфеус находятся на расстоянии 24. По этому расстоянию можно понять, что у Приянки больше общего с Джастином, чем с Морфеусом.