к вы уже видели, это делается за время O(n). Итак, имеется операция, выполняемая за время O(n), и ее необходимо выполнить n раз:
Уменьшение количества проверяемых элементов
Возникает закономерный вопрос: при каждом выполнении операций количество элементов, которые нужно проверить, сокращается. Со временем все сведется к проверке всего одного элемента. Почему же время выполнения все равно оценивается как O(n2)? Это хороший вопрос, и ответ на него связан с ролью констант в «O-большом». Тема будет более подробно рассмотрена в главе 4, но я кратко объясню суть. Вы правы, вам действительно не нужно каждый раз проверять весь список из n элементов. Сначала проверяются n элементов, потом n – 1, n – 2 … 2, 1. В среднем проверяется список из ½ × n элементов. Его время выполнения составит O(n × ½ × n). Однако константы (такие как ½) в «O-большом» игнорируются (еще раз: за полным обсуждением обращайтесь к главе 4), поэтому мы просто используем O(n × n), или O(n2).
Все это требует времени O(n × n), или O(n2).
Алгоритмы сортировки очень полезны. Например, теперь вы можете отсортировать:
• имена в телефонной книге;
• даты путешествий;
• сообщения электронной почты (от новых к старым).
Алгоритм сортировки выбором легко объясняется, но медленно работает. Быстрая сортировка — эффективный алгоритм сортировки, который выполняется за время O(n log n). Но мы займемся этой темой в следующей главе!