Цивилизация № 1 - страница 63

Шрифт
Интервал

стр.

Поколения исследователей считали, что каменные круги и другие доисторические памятники были построены в каких-то неизвестных языческих ритуальных целях во всех других отношениях отсталыми и темными племенами каменного века. Люди более романтического склада порой запутывали дело, примешивая сюда то немногое, что известно о кельтских народах более позднего времени, и приписывая мегалитическим памятникам всякого рода ненужные тайны и мистику. Эти романтики считают, что в умах язычников, поклонявшихся утерянному культу природы, хранилась великая мудрость. Открытие Александра Тома не оставило камня на камне от представления, будто это были простодушные, безыскусные люди, какими их рисовало большинство археологов. Нам следует питать уважение к тем забытым людям, ибо они были воистину великими астрономами и геометрами.

Уровень развития науки, которого достигли шумеры, древние египтяне и древние греки, давно оценен и описан, но представления о мегалитических строителях Британских островов можно только реконструировать, исследуя детективными методами немногочисленные оставшиеся после них артефакты. Как это ни печально, но мы никогда не узнаем, какие мифы и легенды они передавали из поколения в поколение, и мы никогда не услышим музыку, которую они играли, и песни, которые они пели.

Другие достижения людей мегалита

Однако, как мы только что видели, вполне возможно реконструировать математику, которую знали и понимали эти люди, и это дает нам ключ к раскрытию их других достижений. Мы определили, что число 366 было центральным для мегалитической системы, так как это число вращений Земли за время прохождения одной орбиты вокруг Солнца (год) и поскольку одна 366-я часть суток представляет собой разницу между солнечными и сидерическими (звездными) сутками. Второе важное число этой системы было 360, число секунд мегалитического градуса. Мегалитическая геометрия работала на сочетании этих двух чисел.

Александр Том заметил, что те, кто строил каменные круги, которые он изучал, понимали концепцию, называемую нами пи, отношение диаметра круга к его окружности. Длина диаметра круга укладывается в длину его окружности приблизительно три и одна седьмая раза. Более точно мы можем выразить это число как 3,14159265, однако ряд цифр после десятичной запятой может быть бесконечным.

Том описал, как некоторые каменные круги были построены в виде тщательно рассчитанных парабол, которые, по всей видимости, должны были выдерживаться для их главного диаметра в рамках коэффициента 3:1 вместо пи. В других случаях строители кругов распрямляли стороны кругов или предавали им яйцевидную форму, очевидно, пытаясь загнать пи в округленное отношение 3:1, которое оно просто не может иметь.

Для того чтобы полнее исследовать познания давно умерших строителей в такого рода вещах, мы решили поглубже покопаться в главном мегалитическом числе 366, чтобы выяснить, не состоит ли оно в какой-то связи с пи. К нашему вящему удивлению, мы быстро нашли очень важное связующее звено. Представьте себе следующий сценарий:

1. Построен круг с окружностью 366 мегалитических ярдов.

2. Затем периметр круга делится на половину мегалитического ярда, и получается 732 части всего круга.

3. Диаметр круга будет поэтому равен 233 мегалитическим ярдами (732, деленное на пи).

Поразительно, но такой круг оказывается невероятно близким к тому, чтобы иметь целое число единиц в окружности и ее диаметре. Разница между истинными целыми числами, выражающими величину длины окружности и диаметра, в данном случае равняется одной пятитысячной миллиметра для круга с окружностью 260 метров. Это крошечное расхождение намного меньше величины, которую способен различить человеческий глаз. Для любого математика алгоритмической школы это полное соответствие величин, которое вполне удовлетворяет потребностям повседневной практики жизни.

Нам показалось увлекательным, что эти мегалитические числа могут давать такие почти совершенные круглые числа для окружности и диаметра круга. Но имеет ли какое-нибудь особое значение получившийся диаметр величиной 233 единицы?


стр.

Похожие книги