Перспективными в этом отношении выглядят так называемые обломочные (или осколочные) пылевые диски, которые образуются на завершающем этапе формирования планетной системы. Вообще образование планет начинается с пыли и заканчивается ею, но пыль эта очень и очень разная. Исходная пыль — межзвёздная. В протопланетном диске она коагулирует, постепенно превращаясь во всё более крупные тела (планетезимали), некоторые из которых объединяются в большие планеты.
В какой-то момент несколько самых крупных молодых планет начинают настолько сильно перемешивать прочие тела диска своим тяготением, что процесс дальнейшего слияния планетезималей заканчивается. При взаимных столкновениях они уже не объединяются, а разрушаются. Дробление планетезималей снова заселяет диск мелкой пылью, и в это время он как раз и становится обломочным. С наблюдательной точки зрения обломочный диск отличается от протопланетного почти полным отсутствием газа (он либо вошёл в состав планет-гигантов, либо выметен из системы) и более-менее солидным возрастом звезды (протопланетные диски живут не более нескольких миллионов лет).
Обломочные диски гораздо лучше протопланетных подходят для поиска планет. Во-первых, такой диск гарантированно (если мы верно представляем их природу) сосуществует с планетной системой, поскольку появляется из-за наличия планет. Во-вторых, он достаточно плотен, чтобы его можно было наблюдать существующими инструментами. В-третьих, он излучает в инфракрасном (ИК) и радиодиапазоне, где наблюдениям не мешает излучение центральной звезды.
Первые обломочные диски были обнаружены в начале 1980-х годов при помощи космического инфракрасного телескопа IRAS. Сейчас известно, что подобными структурами окружено около 15 процентов близких звёзд главной последовательности. В их число входят такие знаменитые объекты, как Вега, Фомальгаут, тау Кита, бета Живописца. Интересно, что обломочные диски встречаются у звёзд очень разных возрастов. Тау Кита, например, даже немного старше Солнца. Такое долгожительство также указывает на осколочную природу. Пылинки быстро падают на звезду, поэтому, чтобы сохранить диск на протяжении сотен миллионов и даже миллиардов лет, требуется, чтобы запасы пыли постоянно пополнялись.
Около пары десятков обломочных дисков достаточно близки к Солнцу, чтобы мы могли не просто констатировать их наличие, но и изучать структуру. Структура оказывается замысловатой, со сгустками, спиральными ветвями, изгибами. Например, диск у Фомальгаута — и не диск вовсе, а кольцо, причём смещённое: центр кольца не совпадает со звездой. Диск беты Живописца мы видим с ребра, поэтому говорить о его структуре сложнее, зато сбоку видно, что пылевых дисков у этой звезды два. Кроме основного внешнего есть ещё маленький внутренний диск, наклонённый по отношению к внешнему под углом в несколько градусов.
Для пылевых дисков в планетных системах разнообразие форм неудивительно, поскольку тяготение планет не даёт ни пылинкам, ни рождающим их крупным телам выстраиваться в гладкую симметричную систему. Больше того, по характеру возмущений можно пытаться оценить параметры планеты и её орбиты, а затем — при особом везении — подтвердить догадки при помощи прямых наблюдений. К сожалению, прямые наблюдения внесолнечных планет крайне сложны. Поэтому они по сей день остаются штучным товаром и, скорее, усложняют ситуацию, чем проясняют её.
Например, в 2005 году Пол Калас с коллегами при помощи Космического телескопа им. Хаббла построили подробную карту пылевого кольца у Фомальгаута, а в 2008 году объявили о том, что им удалось (также на «Хаббле») сфотографировать планету, которая определяет ключевые параметры кольца — сдвиг относительно звезды и очень резкий внутренний край. Казалось бы, всё выстраивается в единую картину. К тому же в 2011 году авторы сообщили, что им снова удалось наблюдать Фомальгаут b, причём в позиции, которая в пределах ошибок согласуется с его орбитальным движением. Однако попытки обнаружить планету в ИК-диапазоне, где она должна быть видна гораздо лучше, чем в оптике, успехом не увенчались. Правда, это противоречие, возможно, разрешили новые