«Связанные» атомарные облака можно использовать для телепортации квантовых состояний из одной области пространства в другую. Подобные эффекты будут играть важнейшую роль в квантовых компьютерах. Правда, вместо атомарных облаков в них будут использованы электроны в полупроводниковых материалах: спины электронов ориентируют с помощью магнитного поля, а затем направят на них лазерный луч, что и вызовет переход к связанному состоянию. Впрочем, пока неизвестно, удастся ли компьютеру, устроенному по такому принципу, проделать хотя бы несколько сотен операций, прежде чем «связанное» состояние пройдет.
Свет, который движется быстрее себя
Сенсация назревала давно. Потом журнал «Physical Review Letters» сообщил, что группе итальянских физиков во главе с Ранфаньи удалось создать короткоживущий световой импульс, который на очень коротком расстоянии (меньше метра) двигался со скоростью, в пять-семь раз больше скорости света в вакууме (которая, согласно теории относительности Эйнштейна, является предельной скоростью передачи физической информации в космосе).
Сообщение вызвало легкий шумок в соответствующих научных кругах, однако не показалось вполне убедительным. Утверждения о том, что световые импульсы определенного характера могут преодолевать «световой барьер», циркулировали в физике уже с 70-х годов, и соответствующие экспериментальные результаты время от времени появлялись в печати уже с тех самых пор (например, работа Стивена Чу 1982 года), но неизменно оказывались неоднозначными. На сей раз ситуация оказалась иной.
Почти одновременно с итальянской публикацией появилось сообщение, что в журнал «Nature» подана и находится на рецензировании сенсационная статья Ли-Джунг Ванга и его коллег из Принстонского университета, описывающая эксперимент, в котором скорость светового импульса в сотни раз (!) превысила скорость света. Экспериментаторы посылали протяженный (90 метров длиной) световой импульс на прозрачную камеру длиной 6 сантиметров, заполненную газом из цезиевых атомов, и наблюдали поразительный факт: выходящий из камеры импульс появлялся по другую сторону камеры раньше, чем исходный импульс успевал войти в нее.
Возникало головокружительное ощущение, что рушится не только Эйнштейнов «световой барьер», но само представление о причинности: свет появляется из прибора раньше, чем успевает в него войти. Однако детальный анализ процессов распространения световых импульсов показывает, что ситуация не столь парадоксальна. Цезиевый газ в камере как бы восстанавливает импульс уже по его (очень дальнему) переднему фронту, не дожидаясь, пока придет его пик.
Остается лишь решить, не происходит ли здесь передача информации со сверхсветовой скоростью? Это действительно нарушило бы и основной принцип теории относительности, и принцип причинности. Однако априори, без специальной экспериментальной проверки ответить на этот вопрос нельзя. Информация, передаваемая световыми импульсами, переносится ими как целым, она «закодирована» в форме каждого импульса. Но из эксперимента не следует, что восстанавливается точная форма импульса, то есть содержащаяся в нем информация.
Вообще говоря, это отнюдь не обязательно, поскольку составляющие волны могут сложиться «по новой» с полным сохранением исходной энергии, но в совершенно иной форме, и тогда информация сменится абракадаброй. Сами авторы, Ванг и его коллеги, считают, что это именно так и что поэтому передавать «сверхсветовую» информацию с помощью их установки нельзя. Тем не менее они намерены заняться специальной проверкой этого предположения. Учитывая его принципиальную важность, такая проверка представляется жгуче желательной.
Меж тем «сверхсветовой прорыв» Ванга уже расширен, хотя и в совершенно ином направлении. Группа швейцарских физиков сообщила через Интернет, что ей удалось измерить, с какой скоростью два «взаимосвязанных» фотона общаются друг с другом. Такие фотоны отличаются от обычных тем, что рождаются в одном и том же эксперименте, имея взаимосвязанные характеристики, и как бы далеко потом ни разлетались, изменение характеристики одного «тотчас» вызывает соответствующее изменение той же характеристики другого. Теперь швейцарские ученые измерили это «тотчас» и установили, что скорость, с которой сигнал об изменении характеристики передается от одного фотона к другому, как минимум в 1500 раз больше скорости света в вакууме. С такой скоростью до ближайшей звезды был бы всего лишь день лета. Увы, это опять скорость передачи сигнала, но не информации.