Жизнеописание Л. С. Понтрягина, математика, составленное им самим - страница 49

Шрифт
Интервал

стр.

Результат 2-го типа. Предельные циклы Пуанкаре. Если состояние технического или физического объекта определяется двумя величинами x, y, то процесс изменения этих величин во времени обычно описывается системой двух обыкновенных дифференциальных уравнений dx

Здесь правые части уравнений не зависят от времени t, т.е. система (1) автономна. Систему дифференциальных уравнений (1) можно интерпретировать на плоскости в виде векторного поля, ставя в соответствие каждой точке (x, y) плоскости фазовый вектор ( f(x, y), g(x, y)). Решение системы (1) можно также интерпретировать в виде линии на той же фазовой плоскости. Для этого проводят линию, описываемую решением (x(t), y(t)) на фазовой плоскости, считая t параметром. Эти линии называются фазовыми траекториями системы (1). Они не пересекаются между собой, покрывают всю плоскость и дают так называемую фазовую картину решений системы дифференциальных уравнений (1). Две эти интерпретации связаны между собой. Фазовой вектор, отнесённый к точке (x, y), касается фазовой траектории, проходящей через эту точку.

Если задано начальное значение (x>0, y>0) при заданном значении времени t>0, то, конечно, можно вычислить решение системы уравнений (1) при этом начальном значении на любом конечном отрезке времени t>0tt>1. Возможность нахождения численного решения дают современные вычислительные машины. Но нахождение таких решений на конечном отрезке времени не решает всех проблем, которые возникают относительно системы дифференциальных уравнений (1). Так, вопрос о том, имеет ли система уравнений (1) периодические решения, т.е. замкнутые фазовые траектории, решить, вычисляя решения на конечных отрезках времени, невозможно. Точно так же невозможно решить вопрос о том, как ведут себя траектории, когда время неограниченно возрастает, а это очень важно для разных технических вопросов. На всё это обратил внимание Пуанкаре, введя в рассмотрение фазовую картину системы дифференциальных уравнений (1), положив этим начало качественной теории дифференциальных уравнений.

Пуанкаре принадлежит основное понятие, возникшее в качественной теории, — понятие предельного цикла. Периодическое решение системы (1) изображается на плоскости в виде замкнутой фазовой траектории. Если вблизи неё нет других замкнутых траекторий, то эта замкнутая фазовая траектория называется предельным циклом. Оказывается, что фазовые траектории, проходящие вблизи предельного цикла, наматываются на него как спирали и изнутри, и снаружи, при неограниченном возрастании или убывании времени t. В предположении некоторой общности положения оказывается, что траектории на предельный цикл снаружи и изнутри наматываются в обоих случаях либо при возрастании t, либо при убывании времени t. Если они наматываются при возрастании времени t, то предельный цикл является устойчивым решением. Физический прибор, описанный системой (1), может работать на этом предельном цикле, т.е. выдавать устойчивые периодические колебания. Пуанкаре обратил внимание также на значение положения равновесия системы (1), т.е. таких точек фазовой плоскости, которые обращают в нуль правые части дифференциальных уравнений (1). Эти точки являются постоянными решениями системы (1). Поведение траекторий вблизи них играет важную роль. Оно было изучено Пуанкаре, и он дал классификацию положений равновесия на основании этого поведения.

Качественная теория системы уравнений (1), построенная Пуанкаре, является характерным результатом 2-го типа. Ясно, что очень важно было решить систему уравнений (1), но получить её решение в виде формул удаётся лишь для очень немногих систем уравнений. Поэтому возникла задача найти какой-то новый подход к рассмотрению этих уравнений. Это сделал Пуанкаре, сосредоточив своё внимание на фазовой картине траекторий. Он извлёк из этой фазовой картины то важнейшее, что она даёт. Это предельные циклы, положения равновесия и общий характер поведения траекторий при неограниченно возрастающем t. Таким образом, было обнаружено новое математическое явление, предвидеть которое исходя из системы (1) невозможно.


стр.

Похожие книги