Юный техник, 2006 № 08 - страница 23

Шрифт
Интервал

стр.

Силовой цилиндр сделайте из куска латунной гильзы от патрона для охотничьего ружья. Если крышка латунная, то гильзу можно к ней припаять. Если алюминиевая — припаяйте к гильзе жестяной фланец и прикрутите к крышке винтами-саморезами.

Поршень лучше выточить на токарном станке, но, если станка нет, можно спаять его из жести. Для этого отрежьте полоску жести и несколько раз протяните ее вокруг гладкого стержня. В результате она приобретет упругость и способность сворачиваться в спираль.

Вставьте два куска такой спирали в гильзу и, постепенно выдвигая, пропаяйте в ней шов. К получившемуся цилиндрику припаяйте крышку, опилите, просверлите отверстие, и у вас получится поршень.

Вытеснитель вырежьте из пенопласта при помощи раскаленной нихромовой проволоки. (Нихром можно взять от старого паяльника.) Схема приспособления для изготовления вытеснителя показана на рисунке.

Поршень и шток вытеснителя, как уже сказано, соединяются с кривошипом при помощи шатунов. Коленчатый вал выгибается из стальной проволоки. Он установлен на жестяных стойках. На одном его конце закрепите подходящий пропеллер. Чтобы избежать продольного сдвига вала, наденьте на него муфты с винтами от детского конструктора.


Отрезание кольца от пластиковой бутылки.



«Пушечное» сверло и его работа.



Изготовление поршня без помощи токарного станка:

>1 — силовой цилиндр; 2 — жестяная вставка.



Схема простейшего станка для резки пенопласта:

>1 — трансформатор 12/220 В с изолированной вторичной обмоткой; 2 — нихромовая проволока.



Этот стирлинг работает от тепла руки.



Вентилятор, работающий от свечи.



…а этому для работы достаточно чашки кофе.

А. ИЛЬИН

Рисунки автора

ФИЗИЧЕСКИЕ ЭКСПЕРИМЕНТЫ

Классная дифракция



Казалось бы, стоит присоединить к телескопу микроскоп, и мы получим громадное увеличение, позволяющее видеть самые далекие галактики или гуляющих по Луне ее жителей, если, конечно, они там есть. Это пробовали не раз, но в окуляре прибора появлялись лишь детали изображения, которых в природе нет.

Казалось бы, стоит только добавить к микроскопу несколько линз, и станут видны если не атомы, то вирусы. Но и здесь та же история: появляются какие-то ложные изображения.

Виновато в этом явление дифракции — огибания преграды световыми лучами. Но нет худа без добра. Та же дифракция очень полезна, поскольку позволяет делать красочные наклейки и объемные голограммы, сверхточные химические приборы и антенны радиолокаторов. Так что об этом явлении стоит поговорить подробнее.

Дифракцию света нетрудно наблюдать в опытах. Они описаны в книге: Башкатов М.Н., Огородников Ю.Ф. Школьные опыты по волновой оптике. М., 1960. Вот один из них.

Обычная булавка с колечком укреплена па кусочке дерева и освещена лампой карманного фонаря с расстояния 1–1,5 м. Если на булавку посмотреть через лупу, то станет отчетливо видна дифракционная картина (рис. 1).



Точно так же рассмотрение мелких предметов через микроскоп с очень большим увеличением позволяет отчетливо видеть их дифракционные картины. Они так причудливы, что их нередко принимают за реальные детали, и это иногда приводило к ложным открытиям.

Нетрудно увидеть дифракцию света на круглом отверстии в листе черной бумаги. Для начала сделайте большое отверстие, например, при помощи дырокола. Тогда под лупой будет видна легкая цветная кайма по его краям снаружи. У луча света, выходящего из большого отверстия, дифракционная картина почти незаметна. В большинстве случаев ее можно вообще не учитывать, полагая, что свет распространяется исключительно прямолинейно. Дифракционная картина крохотного отверстия, проколотого в бумаге иглой, гораздо больше, чем оно само (рис. 2). И выглядит как система колец.



Примечательно, что отверстие здесь выступает лишь как источник света с малыми угловыми размерами. Его можно заменить светящейся точкой любого происхождения. Взяв, например, отражение солнца в шарике от подшипника, лежащем на черном фоне, можно увидеть отчетливую картину, состоящую из колец, как дифракция на отверстии.

Отражение солнца в шарике — не что иное, как его оптически уменьшенное изображение. Так, например, в шарике диаметром 3 мм мы видим солнце таким, каким бы оно виделось с очень далекой планеты. Поэтому звезды, находящиеся от нас гораздо дальше, предстают перед окуляром обычного телескопа как крохотные светящиеся точки, при увеличении которых можно видеть лишь их дифракционные картины.


стр.

Похожие книги