Исходя из этого, японские ученые предлагают «усовершенствовать» космонавтов, отправляющихся, допустим, к Марсу, удаляя им путем микрохирургических операций наиболее радиочувствительные органы. Например, заменять натуральный хрусталик глаза на искусственный.
Непонятно, правда, как произвести полноценную замену таких радиочувствительных органов и тканей, как кожа или костный мозг. Быть может, лучше отправлять в длительные космические путешествия роботов или киборгов, специально сконструированных для таких задач?
Специалисты ведущих фотофирм мира ни на миг не прекращают поиски все новых способов усовершенствования съемочной аппаратуры. С некоторыми из их любопытных разработок мы и хотим познакомить вас сегодня.
Недавно ведущие мировые разработчики цифровой оптической техники обнаружили интересный эффект — при подсветке цифровой матрицы в момент съемки инфракрасным излучением ее чувствительность повышается на 15–20 %. Когда начинаешь разбираться в сути эффекта, понимаешь, что так и должно быть. Однако заметили все это почему-то только недавно.
В самом деле, инфракрасное излучение — оно же, собственно, и тепловое. И не секрет, что при повышении температуры многие реакции, процессы протекают быстрее.
Технически усовершенствовать камеру тоже довольно просто. Инфракрасные диоды весьма дешевы и требуют небольших затрат энергии для своей работы. Во время же экспериментов с ними выяснилось, что подобным образом можно повысить и чувствительность обычной фотопленки. Надо лишь в момент открытия затвора произвести внутри аппарата вспышку инфракрасного диода, добавив таким образом в спектр видимого излучения еще инфракрасное. Обычная пленка от инфракрасного излучения не засвечивается, зато повышает свою чувствительность.
Повышение же реальной чувствительности пленки или матрицы дает возможность применять на фотоаппаратах объективы с меньшей фотосилой, а значит, и более легкие, компактные, дешевые. Причем для электронной техники, где объективы и так невелики, тут же родилась идея использовать жидкостные линзы.
Вы, наверное, не раз видели: капельки воды на стекле не растекаются, а сворачиваются в чуть приплюснутые тяжестью шарики. Причем эти шарики обладают всеми свойствами двояковыпуклой линзы. Мало того, приплюснутостью капли можно управлять, например, с помощью электростатического поля. А при этом будет меняться заодно и оптическая сила линзы, то есть, говоря проще, коэффициент увеличения.
В общем, в лабораториях Philips ныне создан экспериментальный образец жидкостного объектива с габаритами 3x2,22 мм. Внутри корпуса такого объектива — два жидких вещества (токопроводящий водный раствор и масло-диэлектрик) с различными коэффициентами преломления. Изнутри на боковые поверхности корпуса и на одно из оснований нанесено гидрофобное покрытие. Нежелание соприкасаться с ним вынуждает жидкость принять форму линзы.
Прикладывая электростатическое поле, можно менять геометрию линз-капель, а значит, и фокусное расстояние данного объектива. Причем очень быстро — менее чем за 0,1 секунды. Единственный недостаток данного зум-объектива — его чувствительность к вибрации. При тряске геометрия капли искажается, и это ухудшает изображение. А уж если такой объектив уронить, так он и вообще теряет свою работоспособность на некоторое время — жидкости перемешаются, и придется выжидать, пока они не вернутся в исходное состояние. Тем не менее, конструкторы не теряют надежды справиться с недостатками конструкции, использовав специальные компенсаторы тряски.
С. СИНЕЛЬНИКОВ