Юный техник, 2005 № 05 - страница 21

Шрифт
Интервал

стр.

Таким образом, воздух прошел по замкнутому пути и совершил цикл, при котором тепло частично перешло в механическую энергию. Весь этот процесс называется замкнутым термодинамическим циклом. КПД этого цикла возрастает с увеличением температуры нагревания воздуха. Пределом ее, вообще говоря, является прочность металла змеевика, а реально ее ограничивают наши технологические возможности: прочность соединений, работоспособность золотников и поршней при высоких температурах. Для любительских конструкций она не превышает 400 °C. При этом КПД может достигать 10–15 %. Если учесть, что КПД двигателя мопеда лежит в пределах 5—10 %, это не так уж мало.

Очень часто воздушно-тепловые двигатели делали по классической схеме с двумя кривошипно-шатунными механизмами. КПД их был очень низок, так как из-за необходимости работы при очень низкой температуре, обусловленной стойкостью материала теплообменника, затраты мощности на сжатие составляют около 70 % мощности, получаемой при расширении. Эта мощность от поршня цилиндра расширения к поршню цилиндра сжатия передается через два кривошипно-шатунных механизма. Потери на трение в этом случае не складываются, а перемножаются, и выходит, что процесс сжатия отнимает до 90 % по энергии.

В двигателях внутреннего сгорания, откуда такая механическая схема была скопирована, затраты мощности на сжатие не превышают 20–40 % и на их экономичность почти не влияют.

Однако давно известны механизмы, позволяющие передать мощность от поршня к поршню без потерь. Для этого поршни в них просто-напросто соединяются штоком.

Схема кривошипно-кулисного двигателя, показанная на рисунке 2, работала в воздушно-тепловом двигателе одного из наших читателей.



Вот как он был устроен. Обратите внимание на ряд отверстий в конце обоих цилиндров. При повороте кривошипа в цилиндре сжатия возникает разрежение. Воздух из других полостей двигателя в него попасть не может благодаря наличию обратного клапана. Как только кромка поршня пройдет мимо ряда отверстий, воздух ворвется в цилиндр, заполнит его и, едва поршень изменит направление движения, сразу начнется такт сжатия. При этом он протолкнет воздух через теплообменник, где тот нагреется, и пошлет его в расширительный цилиндр. Здесь воздух совершит работу, но давление его еще не снизится до первоначального.

Когда поршень этого цилиндра откроет ряд отверстий, воздух через них выйдет. Затем поршень пойдет обратно и начнет сжимать его. На этом этапе происходит сжатие воздуха и некоторое накопление энергии. Эта энергия будет частично возвращена на вал при очередном расширении воздуха.

При таком способе работы происходит излишний выброс горячего воздуха, а значит, повышается расход топлива и потеря мощности. Добавим, что в конструкции нашего читателя цикл не был замкнут. Но благодаря этому двигатель получился предельно простым.

Замкнуть цикл не так уж сложно. Нужно лишь соединить впуск и выхлоп через дополнительный теплообменник, который обдувается струей свежего воздуха или охлаждается водой. В таком виде двигатель, работая от любого источника тепла — керосина, газа, дров, годится для привода электрогенератора.

Мощность его, по нашим расчетам, близка к сотне ватт при рабочем объеме расширительного цилиндра всего 0,1 л и скорости вращения вала около 100–120 об/мин.

Повысить мощность и экономичность двигателя можно за счет улучшения распределения горячего воздуха. Для этого нужны управляемые золотники или клапаны, открывающиеся для впуска горячего воздуха в расширительный цилиндр при достижении поршнем верхней мертвой точки и закрывающиеся после прохождения поршнем 1/3 — 1/4 хода. В идеале для этого нужны электромагнитные клапаны, управляемые при помощи пары контактов, замыкаемых, например, профилированным кулачком на валу. Такая система позволяет регулировать продолжительность впуска воздуха в расширительный цилиндр и тем самым увеличивать крутящий момент. Это полезно при движении на подъеме.

Неплохой результат можно получить и при помощи клапанов, открываемых толчком поршня (рис. 2).

С такими клапанами двигатель приобретает способность автоматически приспосабливаться к условиям дороги. При замедлении скорости на подъеме или на плохой дороге в цилиндр будет поступать больше воздуха, крутящий момент двигателя возрастет и скорость увеличится.


стр.

Похожие книги