Рис. II-8. Развитие нейронов и нейроглии (Bailey, 1933).
Другое важное назначение олигодендроглии состоит, по-видимому, в том, что она направляет конусы роста нейронов. В периферической нервной системе известны клетки, тесно Связанные с глией и названные шванновскими, которые направляют рост нервных волокон, регенерирующих после повреждения. При этом имеет место такая последовательность событий: отсеченное или поврежденное нервное волокно погибает, дегенерирует по направлению к телу клетки, от которой оно происходит. Тело клетки может быть локализовано в спинном мозгу на расстоянии нескольких футов ( 1 фут = 304,8 мм ) от места повреждения. Немедленно начинает размножаться особый тип репаративных клеток, имеющихся в оболочке нерва, которые и заполняют пространство, освободившееся после гибели волокна. На фазе дегенерации они создают колонку ткани. Когда на теле клетки начинается процесс регенерации, путь, по которому будет следовать растущий конец нервного волокна, готов. Когда же такая колонка отсутствует, конус роста нервов распространяется во все направления и образует угол, который, конечно, не имеет функционального значения и часто болезненно чувствителен.
Эти специфические репаративные шванновские клетки в эмбриогенезе происходят из того же источника, что и нервная и гли-альная ткани. Более того, эти шванновские клетки обвиваются вокруг нервных волокон (рис. II-9) и способствуют образованию миелиновой оболочки подобно тому, как это делает олигодендрог-лия в центральной нервной системе.
Рис. II-9. Фотография поперечного среза аксона периферического нерва (Ах), полученная с помощью электронного микроскопа и показывающая оболочку аксона, образованную шванновской (Em., Im.) клеткой (Truex, Carpenter, 1969).
Эти данные и привели большинство исследователей к объединению олигодендроглии и шванновских клеток в один класс. Вполне возможно, следовательно, что олигодендроглия направляет рост нейронов в центральной нервной системе, подобно тому как это делают шванновские клетки в периферической нервной системе.
Тот факт, что глия обвивается вокруг окончаний нервных волокон, ставит перед нами интересную проблему. За исключением тех случаев, когда соединение между нервами осуществляется посредством особых структур, называемых синапсами, изменения электрических потенциалов, возникающие в нейронах, вызывают потенциалы и в глиальных клетках.
Насколько же сильно влияние этих клеток на конфигурации, образуемые потенциалами соединений?
Хотя на такие вопросы еще не получено ответа, они заставляют предположить, что происходящие в глии изменения могут постоянно менять активность групп нервных клеток, с которыми она так тесно связана.
ХИМИЧЕСКАЯ ПЛАСТИЧНОСТЬ
Ряд экспериментов прямо указывает на участие глии в механизме памяти. Одним из веществ, обеспечивающим взаимодействие между глией и нейронами, оказалась рибонуклеиновая кислота (РНК – химическое вещество, определяющее конфигурацию-протеинов), которая сама является производной дезоксирибонуклеиновой кислоты (ДНК), молекулы генетической памяти. Фактически эти исследования показали, что при стимуляции нейронов вырабатывается больше РНК, чем в любой другой ткани тела (Hyden, 1961). После прекращения стимуляции и уменьшения выработки РНК в нейроне большие концентрации молеку-лярно сходной РНК начинают появляться в находящейся по соседству глии (Hyden, 1969).
Эти эксперименты, проведенные на мозге кроликов и крыс, были усовершенствованы введением выполняемой под микроскопом процедуры отделения глии от нейронов в вестибулярном ядре – группе нейронов, контролирующей поддержание равновесия животного. Стимуляция этого механизма «равновесия» первоначально осуществлялась следующим образом: животное помещалось в центрифугу и вращалось в ней. В более поздних экспериментах от крыс требовалось, чтобы они карабкались по наклонно натянутой проволоке. При успехе они достигали платформы с едой, при неудаче падали на расположенную внизу клетки решетку, по которой пропускался слабый электрический ток. На различных стадиях эксперимента микрохимическими методами определялась концентрация РНК в вестибулярных нейронах и глии животных. Во время пассивного вращения в центрифуге общее количество РНК в нейронах увеличивалось; увеличение содержания РНК было обнаружено и в течение нескольких часов после вращения. Активное карабканье по проволоке не только увеличивало общее количество РНК, но и изменяло соотношение фракций РНК, которые могли быть идентифицированы по боковым цепочкам, характерных для этих молекул (рис. II-10).