Вселенная с нуля. От Большого взрыва до абсолютной пустоты - страница 17

Шрифт
Интервал

стр.

Именно так и происходит с окисью углерода – его молекулу могут возбудить даже не очень насыщенные энергией фотоны фонового излучения. Как только молекулы окиси углерода из межзвездного газа переходят на уровень энергии чуть выше обычного, они начинают поглощать излучение определенной длины волны, распространяющееся по галактике, а за ним как раз наблюдает астроном. По пути к наблюдателю яркий свет, излучаемый очень активным ядром исследуемой галактики, например квазаром, проходит сквозь межзвездные облака другой галактики, находящейся перед объектом наблюдения. На спектр излучения впереди расположенной галактики накладывается на той же длине волны полоса поглощения окиси углерода, возбужденной фоновым излучением, который распространяется в изучаемой галактике.

Вследствие расширения Вселенной полоса поглощения смещена в сторону красной части спектра. Таким образом, астрофизики могут оценить примерный возраст события, в ходе которого был поглощен свет, а также уровень возбуждения, на котором находились вовлеченные в этот процесс молекулы окиси углерода. С помощью этих данных ученые могут определить и температуру Вселенной непосредственно в момент поглощения света от удаленного квазара молекулой окиси углерода. Именно так ученые смогли доказать, что спустя три миллиарда лет после начала расширения Вселенной ее температура была все еще в три раза выше, чем сегодня… Это потрясающее доказательство реальности Большого взрыва!


☛ СМ. ТАКЖЕ

Большой взрыв (Начало расширения)

Вселенная становится прозрачной (380 тысяч лет после начала расширения)

10 миллиарда лет назад

Активное звездообразование

Интенсивность звездообразования во Вселенной достигла максимума. Самые массивные звезды создают потоки газа, обогащенного практически всеми природными химическими элементами.

Со времен формирования наиболее крупных структур во Вселенной и до сегодняшнего дня общий вид Вселенной практически не изменился. Однако на масштабе галактик до состояния равновесия, даже неустойчивого, было еще далеко – оно установилось позднее: история Вселенной была долгой. Добывая данные о зарождении и образовании галактик, астрофизики могут опираться только на анализ испускаемого галактиками излучения. Они исследуют все более древние галактики, излучение которых значительнее смещается в красную часть спектра, поэтому приходится использовать телескопы, чувствительные к инфракрасному излучению. В этой спектральной области наблюдениям препятствуют два явления: атмосфера пропускает инфракрасное свечение только через редкие спектральные окна; естественные тепловые помехи, которые создаются в инфракрасном спектре самим телескопом, накладываются на космический сигнал.

Астрофизики борются с этими трудностями с помощью устройств, охлажденных до очень низких температур. Например, на космической обсерватории «Гершель» Европейского космического агентства (ЕКА) фокальная плоскость помещена в огромный криостат (что-то вроде огромного термоса), который поддерживает очень низкую температуру (четыре градуса по шкале Кельвина). Таким образом, исследователи получают данные, которые меняют их понимание процессов формирования и эволюции галактик. В 2014 году американские астрофизики Пьеро Мадау и Марк Дикинсон проанализировали с помощью различных моделей новые данные и пришли к выводу, что пик звездообразования во Вселенной случился примерно десять миллиарда лет назад.

Звездообразование, подстегиваемое все еще частыми столкновениями галактик, достигает в это время максимальной интенсивности. Самые массивные звезды (массой в несколько солнц), продолжительность жизни которых меньше миллиарда лет, быстро проходят свой эволюционный цикл и выбрасывают в межзвездное пространство огромные облака химических элементов, созданных в их недрах. В безумную пляску вступают и элементы, синтезированные во время взрывов сверхновых, то есть в момент гибели самых массивных звезд, а также некоторых звезд из двойных систем. В недрах галактик постепенно устанавливается равновесие между выброшенным из звездных недр газом из новых элементов и заполнявшим межгалактическую среду газом, лишенным тяжелых элементов. По мере снижения интенсивности звездообразования соотношение элементов постепенно устанавливается в основном на уровне значений, которые измерили в XXI веке: 74 % водорода, 24 % гелия и 2 % других элементов – прежде всего кислорода, затем углерода, неона и железа.


стр.

Похожие книги