Однако при этом мы сталкиваемся с проблемой неопределенности. Как мы видели в главе 2, когда пытаешься поймать электрон в небольшое пространство, чтобы создать суперминиатюрные атомы, то, согласно принципу неопределенности Гейзенберга, энергия этих электронов сразу же сильно повышается. Энергия может стать настолько высокой, что электроны вырвутся из электромагнитного притяжения ядра.
В конечном итоге размер атома определяется достаточно четкой комбинацией физических констант: зарядом электрона, постоянной Планка (числом, которое говорит нам, как сильна квантовая механика), массой электрона и скоростью света. Если бы мы смогли переделать фундаментальные константы физики, то смогли бы и делать миниатюрные атомы. А пока проще покупать себе чемоданы попросторнее.
Нейтральность — это удел не только Швейцарии и атомов. Сколько бы материн ни создавалось во Вселенной, протонов и электронов в ней всегда поровну, поэтому Вселенная, в целом электрически нейтральна — и всегда была такой. Нет ни одного эксперимента« в котором не сохранялся бы заряд,— неважно, где его проделывают, на Земле или в космосе. Это приводит к первому основному закону для всех фундаментальных сил: электрический заряд це создается и не уничтожается.
Как можно ожидать, действие в нашей универсальной игре не сводится к тому, чтобы перетаскивать протоны и электроны с места на место, все время сохраняя заряд. Посмотрим, к примеру, на нейтрон. Нейтрон — это что-то вроде пациента в коридоре у кабинета врача: прождав минут десять, нейтрон взрывается. Разница в том, что вместо того, чтобы накричать на регистраторшу, нейтрон буквально разлетается на разные другие частицы.
Самая крупная из этих частиц — протон. Возможно, вас это удивит, поскольку мы говорили вам, что электрический заряд сохраняется, нр задумайтесь вот над чем: в этом нет ничего страшного, если найдется другая частица с отрицательным зарядом, чтобы уравновесить положительный заряд протона. Что-то вроде электрона. Точнее, сам электрон.
В результате нейтронного распада образуется кое- что еще, но мы хотим сделать два предупреждения: 1) как бы ни казалось на первый взгляд, нейтрон не состоит из протона, электрона и кое-чего еще,— он в них превращается; 2) кстати, протоны и нейтроны кое из чего состоят, просто мы еще не Сказали из чего.
Скоро мы поговорим и о других фундаментальных частицах, но боимся, как бы вы еще раньше не заблудились в «зоопарке частиц». Мы не собираем-
ся заставлять вас зубрить большой каталог фундаментальных частиц по той простой причине, что их (по меньшей мере) 18, не считая диких разновидностей одной и той же частицы, которые на самом деле с фундаментальной точки зрения не отличаются друг от друга. Из предупредительности к вам, читатель, мы поместили в конце главы удобное приложение, где перечислен весь «зоопарк» с указанием всего, что вам имеет смысл знать о каждой частице. Не за что, не за что, не стоит благодарности.
Теперь вы знаете о том, из чего состоит материя, примерно столько же, сколько знал каждый лет сто назад, но мы собираемся копнуть чуть глубже, чтобы разобраться* что происходит на самых глубоких уровнях. Вот почему мы собираемся выбить из этих частиц все, что можно,— а для этого нам нужен БАК. Мы надеемся, что протоны — это такие свиньи- копилки или иностранные шпионы: если стукнуть их посильнее, получится кое-что интересненькое[56].
Кольцо коллайдера — это гоночная трасса для протонов, и два протонных луча будут лететь навстречу друг другу со скоростью, близкой к скорости света. Как мы видели в главе 1, чтобы заставить частицы двигаться настолько быстро, нужна прорва энергии. Опустим вычисления — скажем только, что энергии, необходимой, чтобы разогнать два протона до такой скорости, чтобы они распались, хватит, и на то, чтобы по закону Е = тс[57] создать 14 тысяч протонов с нуля. Когда два протона сталкиваются, происходит много разных событий, но все они подчиняются второму из наших основных законов: энергия не создается и не уничтожается.
Зато ее можно конвертировать из движения в массу, и именно это мы и собираемся делать в коллайдерах частиц.