Рассмотрим, например, небесно-механические задачи. С некоторой долей уверенности можно утверждать, что именно с описания видимого движения Солнца, Луны и планет начинаются современные естественные науки.
Первые модели движения небесных тел были основаны на идеализированном качественном рассуждении о том, как должен быть устроен мир. Оказалось, что это не очень хорошая идея – задаваться жесткими парадигмами, вытекающими из общефилософских и/или идеологических источников. В частности, из-за такого подхода на эволюционном древе мы видим и тупиковые ветви. Геоцентрическая система мира – одна из них.
В оправдание древних надо сказать, что с чего-то надо было начинать, и это сейчас, имея за плечами сотни лет развития науки, нам легко их критиковать. Не исключено, что в чем-то мы и сами пока блуждаем в потемках. Но главное, что ранние схемы, описывающие поведение небесных тел, были кинематическими. Ничего не было известно о природе и характере тех сил, которые определяют их движение.
Тем не менее даже при таком подходе, детально анализируя большой комплекс подробных и точных наблюдательных данных[20], да еще с использованием самой передовой на тот момент математики, Иоганн Кеплер смог показать, что планеты движутся по эллиптическим орбитам, а центральное тело находится не в центре, а в одном из фокусов эллипса. Итогом этого анализа явились три закона Кеплера.
Вывод этой троицы на основе понимания физических основ движения планет стал возможен только с появлением ньютоновского закона всемирного тяготения. Стало ясно, что движением планет управляет гравитация. Уточнился и третий закон Кеплера. Теперь в него добавилась масса центрального тела и его спутника. Однако Кеплер не случайно смог описать данные наблюдений Тихо Браге без этих дополнительных членов уравнения. В Солнечной системе масса Солнца во много раз превосходит массу любой планеты и даже сумму их масс. Поэтому для оценок мы иногда продолжаем использовать третий закон Кеплера в оригинальной формулировке: квадраты периодов обращения относятся друг к другу, как кубы больших полуосей орбит[21].
После появления теории Ньютона стало возможным решать разнообразные задачи о движении небесных тел, поскольку теперь можно было записать уравнения для действующих между ними сил и решать их, получая на выходе скорости и координаты, меняющиеся со временем. Разумеется, из-за взаимного влияния орбиты теперь не являются идеальными эллипсами[22]. А если комбинация масс и расстояний такова, что на интересующий нас объект сравнимые влияния оказывают хотя бы два тела (например, Солнце и Юпитер, если речь о какой-нибудь комете или астероиде), то траектория может стать очень сложной.
Анализ таких движений существенно способствовал эволюции физики и математики. Для решения актуальных задач разрабатывались новые методы, открывались новые закономерности. Это было стадией постепенной эволюции, но впереди ученый мир ждало очередное потрясение, сравнимое с созданием ньютоновской механики. Речь, конечно же, о появлении специальной (СТО) и общей (ОТО) теорий относительности.
В начале XX века с интервалом чуть более 10 лет появились две теории, созданные одним автором. Обе радикально изменили физику, а кроме того, дали сильнейшую мотивацию для развития сразу нескольких разделов математики.
Первая теория касалась кинематики при движении с большой скоростью. Что значит большой? Сравнимой со скоростью света. Если нас не интересует точность выше 1 %, то мы можем пользоваться обычными формулами вплоть до скоростей порядка 10 % от световой. Но чем ближе мы подбираемся к пределу, тем заметнее новые эффекты: замедление времени, изменение длины и др.
Специальная теория относительности быстро была принята физиками. За короткий срок удалось проверить ее предсказания, прекрасно совпавшие с данными измерений. Несмотря на всю свою парадоксальность (относительность одновременности, парадокс близнецов и т. д.), физическая теория верна. Давайте потратим немного времени на то, чтобы проговорить, что мы подразумеваем под словами «физическая теория верна».