Время вспять - страница 60

Шрифт
Интервал

стр.

стабильной должна оказаться геликоидальная поперечная структура (напомню, что при отрицательной температуре и том же направлении поля мы имели доменный ферромагнетизм). Но как это доказать, если макроскопическая ядерная намагниченность образца равна нулю? Гольдман придумал замечательно остроумный эксперимент, который я постараюсь объяснить. Вернемся к методу Хартмана и Хана, который мы описали раньше, где резонансный переход поляризации между спинами 19 F и спинами 43Са происходит, когда ларморовские частоты обеих сортов спинов, каждая в своем собственном вращающемся эффективном поле, равны. Как раз такой резонансный переход наблюдался в предлагаемой поперечной упорядоченной фазе спинов фтора, хотя никакого радиочастотного поля на спины фтора не накладывали! Объяснение бросалось в глаза: локальное поле Вейсса, которое "видел" каждый спин фтора, само вращалось, что было возможным, если только вращалась вся упорядоченная фаза. Этот эксперимент я храню в своем маленьком личном музее наук. **Ядерный псевдомагнетизмНаградив каждый ядерный спин псевдомагнитным моментом р.*, я почувствовал соблазн пойти дальше по этому пути и ввести понятие ядерной псевдонамагниченности: M = Np.*P, где N — число спинов в единичном объеме, F — ядерная поляризация, а также понятие псевдомагнитной индукции: В* = (H + 4irM"). Хорошо известно, что в настоящем магнетизме внутри магнитного вещества поле, которое "видит" нейтрон, т. е. то, которое определяет его ларморовскую частоту, не Я, а индукция В (в тридцатых годах у Блоха с Дираком по этому поводу был великий спор; прав оказался Дирак). Было соблазнительно размышлять о том, что по аналогии внутри поляризованной ядерной мишени лар-моровская частота нейтрона П"пропорциональна псевдомагнитной индукции В* = (Я + 4л-М*) = ц(Н + Я*), где Я* = АжМ* = AizNp'P является псевдомагнитным полем, которое "видит" нейтроны. Лар-моровская частота нейтрона П"смещена по сравнению со своим значением в вакууме на ДП"= 7"Я*, где 7"- гиромагнитная постоянная нейтрона. Я недолго размышлял об этой гипотезе, потому что ее оказалось очень легко доказать, пользуясь псевдопотенциалом Ферми, понятием, которое он ввел много лет тому назад (все в этой истории было псевдо-, но вполне реальным). Оставалось доказать экспериментально физическую сущность псевдомагнитного поля, которого пока еще никто не видел. Для поляризованной протонной мишени это выглядело просто. Псевдомагнитный момент протона р.*(1Н) огромен и псевдомагнитное поле Я* внутри водородной мишени будет порядка двух-трех тесла (!) для стопроцентной поляризации. Экспериментальная установка была стандартной. Пучок нейтронов со стопроцентной поляризацией проходит через поляризованную протонную мишень, которая погружена в жидкий гелий внутри криостата. При выходе из мишени нейтроны падают на анализатор, который настроен так, чтобы допускать до нейтронного счетчика лишь нейтроны с поляризацией, обратной поляризации пучка. Счетчик, понятно, считает очень мало нейтронов. Радиочастотная катушка, намотанная вокруг образца, создает внутри мишени вращающееся поле с амплитудой Н\. Если частота вращающегося поля равна ларморовской частоте нейтрона внутри мишени, поле резонансно поворачивает спины нейтронов и анализатор допускает к счетчику большее число нейтронов. Скорость счета увеличивается. По значению резонансной частоты, при которой это происходит, можно определить смещение АП"и измерить псевдомагнитное поле Я*.Все это проще простого, но возникла экспериментальная трудность, преодоление которой сделало эксперимент гораздо более интересным и, осмелюсь сказать, более красивым. Чтобы перевернуть спин нейтрона в одну микросекунду (таково было время пролета нейтрона через мишень), требовалось вращающееся поле с амплитудой в сто гауссов, что было немыслимо с катушкой, купающейся в жидком гелии. Постараюсь объяснить, как мы выбрались из этого тупика, что нелегко описать словами. Да простит мне читатель, которому объяснение покажется тарабарщиной. Накладываем на образец вращающееся радиочастотное поле с амплитудой Н\ в один гаусс (вместо требуемых ста). Частота его сдвинута на небольшую величину Д (соответствующую сотне гауссов) от ларморовской частоты протона (не нейтрона!!). Эффективное поле Яе, которое тогда "видят" протоны, наклонено по отношению к главному внешнему полю Я на малый угол 0= (Н\/А) "(1/100). Вдоль эффективного поля Нс ориентируется ядерная намагниченность M, а также ядерная псевдонамагниченность М* и псевдомагнитное поле Я* = 4тгМ*, которое в нашем эксперименте было приблизительно10000 гауссов! Ввиду малой величины угла в продольная слагающая вектора Я* практически не меняется, но Я* теперь имеет поперечную слагающую, равную ЩывН* и (1/100) х 10000 "100 гауссов. Таким образом, мы одарили псевдомагнитное поле поперечной вращающейся слагающей Я* величиной 100 гауссов, как и требовалось."Ужель загадку разрешили? Ужели слово найдено?" — Нет, не совсем. Правда, мы создали вращающееся псевдомагнитное поле с амплитудой 100 гауссов, но вращается оно с частотой, близкой к ларморовской частоте протона, которая в вакууме отличается от нейтронной множителем порядка — (3/2), т. е. не только величиной, но и знаком. Что делать? Протон (как и все остальные ядерные спины мишени) "видит" только внешнее магнитное поле Я, а нейтрон видит вдобавок и продольное псевдомагнитное поле Я*. Припомним пир в "Макбете", где призрак Банко один видит Макбет. Легко подогнать внешнее поле Я так, чтобы ларморов-ская частота нейтрона П"= 7"(Я+ Я") равнялась внутри образца ларморовской частоте протона Пр= 7,Я.

Все сработало! Спин нейтрона под действием резонансного вращающегося псевдомагнитного поля Я* в 100 гауссов переворачивается, как миленький. Физическая реальность псевдомагнитного поля была доказана с блеском. Добавлю, что я не знаю другого примера, где чисто ядерное поле модулируется как электромагнитное. Забавно, не правда ли? Кроме доказательства физической реальности псевдомагнитного поля, этот акробатический эксперимент позволил измерить, конечно, ц* протона, но это представляло мало интереса, так как он был давно известен. Для измерения ц* ядер других изотопов этот метод не подходит, потому что он основан именно на очень большой величине ц* протона. Я придумал вариант, основанный на методе, который Рамзи предложил много лет тому назад для очень точного измерения магнитных взаимодействий в двухатомных молекулах и с помощью которого он по сей день тщетно пытается "насыпать щепотку соли на хвост" неуловимого электрического дипольного момента нейтрона. Не стану здесь излагать мой вариант, который подходит для всех fi*, даже самых малых. Его изложение можно найти в нашей монографии с Гольдманом. Скажу только, что мы измерили этим способом ц* приблизительно для сотни изотопов. Результатами наших измерений широко пользуются нейтронщики всего мира. Чтобы покончить с псевдомагнетизмом, я должен сообщить, что через некоторое время после нашего опыта с вращающимся псевдомагнитным полем я обнаружил, не без немалого неудовольствия(как сказал бы немец), что на несколько лет раньше два советских теоретика из Дубны — Подгорецкий и Барышевский — предсказали теоретически существование нейтронной прецессии в поляризованной мишени. Их подход во многом отличался от моего, но результат, конечно, был тот же. Хотя Дубна располагала тогда лучшими нейтронными пучками в СССР, а также сильной группой, работающей над поляризованными мишенями, их статья не содержала ни одного реалистичного указания, как обнаружить прецессию, и экспериментов в Дубне не было проведено. Это свидетельствует о качестве контактов в СССР между экспериментаторами и теоретиками. Хочу надеяться, что они тоже перестраиваются. Хочу еще поворчать на советских теоретиков. Они справедливо считаются лучшими в мире, но у них есть раздражающая привычка подсчитывать и предсказывать невероятное число разных явлений, мало заботясь о порядке их величины и еще менее о способе их обнаружения. Когда через несколько лет кто-нибудь, кто (как я) никогда не слыхал об их предсказаниях, обнаруживает экспериментально такое явление, они заявляют о своем приоритете. Их публикации — это пари на будущее. Бдительный читатель может мне заметить, что я сделал то же самое в моей публикации 1960 года, и не будет неправ. В защиту могу лишь сказать, что десять лет спустя эксперименты все-таки сделали мы, а не кто-нибудь другой.*Псевдоядерный магнетизмЯ подразумеваю под этим названием следующее явление. Некоторые парамагнитные ионы, особенно в семействе редкоземельных элементов, не имеют электронного магнитного момента на своем основном уровне, единственном, который населен при низких температурах. Но в присутствии магнитного поля ионы поляризуются, т. е. приобретают существенный магнитный момент. Это поле может быть внешним или, что нас здесь больше интересует, может быть создано магнитным ядерным моментом ц этого же иона. Под действием этого поля электронные оболочки иона приобретают магнитный момент ц", который часто намного больше /i. В эксперименте ЯМР тогда наблюдается векторная сумма /i'= (fj, + ц"). Каждая слагающая вектора ц' вдоль одной из главных осей монокристаллического образца пропорциональна слагающей ядерного момента ц вдоль той же оси, но коэффициенты пропорциональности обыкновенно различны для разных осей. Связь между векторами ц' и p., а значит также между у! и ядерным спином / анизотропна и может быть записана в виде ц' = TI, где Т — тензор. Эта анизотропия выражена иногда очень резко. Например, в фосфате туллия 169Тт отношение поперечных компонент тензора Т к продольным равно 25.Еще анизотропнее связь между компонентами спинов I двух ядер 169Гго. Связь между поперечными компонентами сильнее, чем связь между продольными в (25)2 раз! Этот факт имеет интересные следствия. Приложим к образцу магнитное поле вдоль продольной оси. Если энтропия ядерных спинов столь низка, что после АРВС может появиться дальний порядок, то можно заранее утверждать, что порядок будет поперечным, т. е. вращающимся. Именно это привлекло меня в фосфате туллия, веществе, с которым я познакомился в 1981 году в лаборатории моего друга Блини в Оксфорде. Я привез с собой домой несколько образцов вместе с лучшим студентом Блини, который сделался на время членом нашей команды. Эксперимент, который, как я предполагал, должен был занять два месяца, продлился два года по разным причинам, только некоторые из которых можно было предвидеть заранее, но закончился результатом, полностью согласующимся с моей первоначальной догадкой. Почему я называю это явление псевдоядерным магнетизмом? — А потому, что магнитный момент ц", индуцированный ядерным моментом ц, не ядерный, а электронный. Это не пустые слова: плотность намагниченности, которая соответствует моменту ц'\ не сосредоточена в ядре, как у "настоящего" ядерного момента р, а распределена по всему иону. В принципе, хотя вряд ли на практике, в сумме р' = (р + р") возможно было бы отделить с помощью нейтронной дифракции часть ц'\ размазанную по иону, от настоящего ядерного момента р, сосредоточенного в ядре. Момент р" безусловно магнитный, но не ядерный. Поэтому я и настаиваю педантично на названии псевдоядерный магнетизм. Раньше, в связи с нейтронной дифракцией, мы встретились с ядерным псевдомагнетизмом, наоборот — явлением ядерным, но не магнитным. Существует еще один вид ядерного дальнего порядка, который иногда называют магнитным. Это совсем неправильно, так как ничего магнитного в нем нет. Этот порядок наблюдался впервые в семидесятых годах в твердом гелии 3Яе. Связь между спинами, которая ответственна за этот порядок, другой природы: это обменная квантовая связь между спинами ядер гелия. Не буду здесь больше говорить об этом, но сделаю следующее замечание. Сила этой связи превышает на три или четыре порядка силу дипольной магнитной связи, которая обсуждалась раньше, и критическая температура для перехода в упорядоченное состояние на столько же выше. Эту температуру, порядка одного или двух милликельвинов (не микрокельвинов, как раньше), можно достичь прямым путем в современных криостатах, не нуждаясь в динамической поляризации и в следующем за ней адиабатическом размагничивании. Действующие лица" Кто, Где и Как", — сказал Киплинг. Как — я уже описал довольно подробно. Где — в центре Орм де Меризье, куда я перенес в 1968 году всю "легкую" физику. Кто — это актеры, которые так долго играли в пьесе, которую я писал и содержание которой я рассказывал на предыдущих страницах. Я уже говорил выше о двух Морисах, Гольдмане и Шапелье, и, как мне кажется, я сделал несколько штрихов к портрету Анатоля Абрагама. Ив Руанель (Yves Roinel), выпускник Сюпелек (как я), имел напарником Венсана Буфара (Vincent Bouffard), выпускника Школы двигателей внутреннего сгорания (как этот ко мне попал, Бог знает). Настойчивость и аккуратность Венсана удачно сочеталась со смелостью и изобретательностью Ива. Они составляли славную пару. Вместе они провели от начала до конца всю длинную и трудную работу, которая привела к наблюдению антиферромагнитного порядка в LiH с помощью нейтронной дифракции. Жак-Франсуа Жакино (Jacques-Francois Jacquinot) обучался эксперименту у Шапелье и теории у Гольдмана. У него был дар выражать смутно и малопонятно интересные и порой глубокие соображения. Он в свою очередь обучал Кристиана Урбину (Christian Urbina) — умного и милого чилийца. (Да все они мне были милы.)Ганс Глаттли (Hans Glattli) — швейцарец из Цюриха — был блестящим экспериментатором с руками швейцарского часовых дел мастера. Его единственной слабостью была чрезмерная доброта. К нему льнули лентяи, зная что дядя Ганс скорее сделает за них эксперимент, чем позволит им провалиться. Все эксперименты по псевдомагнетизму — это он. Молоденький Клод Фермой (Claude Fermon) заменил Ива Ру-анеля, который после моего ухода переменил работу. Клод все понимает до того, как успеваешь ему сказать, и, я думаю, пойдет далеко, но уже без меня. По ЯМП работа'ли у нас и иностранцы; упомяну о троих. Стив Кокс (Steve Сох) — британец, высокий, стройный, изящный, бородатый, с ловкими руками и ясной головой — пробыл у меня два года. После этого он успешно работал над поляризованными мишенями в Харуэлле (Harwell) и в ЦЕРН'е. Теперь он с большим успехом специализируется в p,SR (muon spin rotation) — занятие, о котором я скажу несколько слов немного позже. Том Венкебах (Tom Wenckebach) — усатый голландец, находчивый и глубокий — провел у меня только Г Д> но хорошо заполненный работой. Он был пионером в использовании ^а в качестве микроскопического зонда. Пришел он к нам из Лейдена, сделав уже несколько очень красивых работ по спиновой температуре и динамической поляризации. Вернувшись в Лейден, где у него теперь кафедра, он изучал ЯМП протонов в гидрате окисикальция. пйпя ч-Джон Грег (тот самый, которого я вывез из Оксфорда с wt>ajnцами фосфата туллия) — ирландец из Дублина — хотя протестант. но одаренный тем юмором с сумасшедшинкой, без котороголандия не была бы Ирландией. Перед его отъездом я показалему рекомендацию, которую я написал для него университетскимвластям в Оксфорде. Он призадумался: "Кто этот тип? Хотелосьбы с ним познакомиться".Я уже говорил в связи с поляризованными мишенями о нашем замечательном криогенщике, бывшем моряке Пьере Рубо, про ко~ торого Оуэн Чемберлен однажды заметил, что его блестящий ум не засорен излишними знаниями. Не могу обойти молчанием наших техников — Паскета и Айзенкрамера (Pasquette, Eisenkramer)


стр.

Похожие книги