Вирусы. Драйверы эволюции. Друзья или враги? - страница 19

Шрифт
Интервал

стр.

вирусов на 1 миллилитр озерной воды. Когда ученые измерили плотность популяции цианобактерий A. fusiformis в озерной воде в разные моменты времени, им удалось связать уменьшение плотности популяций планктона с микроскопически видимыми признаками поражения цианофагами. Неудивительно, что такие периоды характеризовались уменьшением численности популяций фламинго. Стало ясно, что эти периодически повторявшиеся уничтожения A. fusiformis были обусловлены литическими цианофагами, убивавшими победителей. Это позволяло объяснить и ранее сделанные наблюдения, согласно которым в отдельные периоды в водах озера увеличивалась численность других планктонных видов, что говорило о повторении циклов уничтожения победителей, которые помогали сохранять разнообразие микробных популяций.

Экосистема соленых озер Восточно-Африканской зоны разломов дает первый документально подтвержденный пример того, что инфицирование фагами оказывает сильное влияние на всю пищевую цепь. Простота экосистемы, в которой вирусная инфекция непосредственно влияет на главный источник пищи для карликовых фламинго, находящихся на высших ступенях пищевой цепи, делает этот эффект особенно драматическим. Остается еще одна проблема: почему экология озер так сильно изменилась именно за последние пять десятилетий? Не объясняется ли этот феномен простым улучшением качества наблюдений? Более вероятно, что к уменьшению микробного разнообразия в озерах привели изменения в окружающей среде и стохастические факторы. Упрощенная пищевая сеть стала опасно восприимчивой к значимым флуктуациям биомассы благодаря хищническому поведению фага. В последние годы численность популяции карликовых фламинго на озере Накуру колебалась от сотни особей до миллиона, демонстрируя то мощное влияние, какое может оказывать на наши экосистемы вызванное активностью фагов повышение смертности микроорганизмов.

Генные брокеры

Сокровищница уникальных генов и метаболических функций, метагеном фагов, является ценной валютой адаптивной эволюции в мире микробов. Сейчас мы поймем, что фаги действуют, как биржевые брокеры, облегчая передвижение и обмен генетической валюты, вдыхающей жизнь в экономику эволюции. Генетическая экономика приводится в движение эгоистичностью генома фагов, которые берут за это свою комиссию. Геномы фагов приобретают конкурентные преимущества, которые благоприятствуют успешной репликации их собственных генотипов. Фаги – мощные катализаторы генетического обновления и эволюционной адаптации их микробных хозяев (Casjens, 2003; Penades et al., 2015; Ochman, Lawrence, Groisman, 2000). В предыдущем разделе я познакомил вас с альтернативными моделями поведения фагов, включая модель взаимодействия с индивидуальными клетками-хозяевами и с популяциями клеток, приводящего к изменениям в целых экосистемах. Теперь мы попробуем разобраться в том, как эти взаимодействия влияют на собственную эволюцию вирусов и на эволюцию микробных клеток в пределах таких экосистем.

Термином «рекомбинация» обозначают обмен генетической информацией внутри генома и между геномами. Рекомбинация может происходить между геномами различных фагов, инфицирующих одну и ту же клетку-хозяина, что приводит к переносу генов фага между штаммами. Очень важно, что фаги часто смещают и мобилизуют последовательности нуклеотидов в генах клетки-хозяина. Последовательности ДНК микробной клетки, особенно те, что находятся на краях места внедрения ДНК профага, могут по ошибке включаться в хромосому фага и становиться фрагментом инфекционной вирусной частицы. Таким образом, фаги могут опосредовать перенос и включение генетической информации внутри прокариотической клетки способом, отличным от традиционного способа передачи наследственной информации. Этот процесс горизонтальной передачи генов делает фаг незаменимым инструментом увеличения микробного генного пула и при этом обеспечивает ускорение адаптивной микробной эволюции.

В некоторых экосистемах, например в экосистемах прибрежных морских акваторий, на каждую микробную клетку приходится десять и более инфицирующих ее фагов. По этой причине инфицирование одной клетки бактериофагами двух различных типов встречается, вероятно, достаточно часто. Гены в хромосомах бактериофагов, кодирующие белки, обладающие сходными метаболическими функциями, обычно объединяются в кластеры. Мозаика генных кластеров на хромосоме создает возможность для работы целых генетических модулей, которые могут перемещаться между геномами разных видов бактериофагов (Weinbauer, Rassoulzadegan, 2003). Такой опосредуемый рекомбинацией обмен создает химерические фаговые геномы, а эти геномы, в свою очередь, являются основой для приобретения новых адаптивных способностей. Новообразованный фаг может получить доступ к клеткам других видов, что позволит фагу инфицировать ранее недоступные ему бактерии. Таким образом, путем рекомбинации, совместно с генерализованной трансдукцией генетической информации клеток-хозяев между разными микробными хозяевами, фаги активно способствуют передаче генов между разными видами клеток-хозяев. Когда фаги завершают литическую инфекцию клетки-хозяина, в окружающую среду высвобождается свободная ДНК мертвой клетки. Бактерии легко поглощают такую ДНК и встраивают ее в свои геномы в процессе, называемом


стр.

Похожие книги