Геномные прыжки
В случае с синтезом коротких РНК SARS-CoV-2 механизм получения множества молекул с одной матрицы иной. РНК-зависимая РНК-полимераза начинает считывать информацию с «правого» конца большой вирусной РНК (см. рис. 3). В какой-то момент она доходит до особой последовательности TRS (transcription-regulating sequence — последовательность, регулирующая транскрипцию, то есть синтез РНК) и пробуксовывает на ней из-за особой структуры TRS. Дальше полимераза либо продолжает считывать информацию до следующей TRS, либо перепрыгивает сразу на «левый» концевой участок, где особый сигнал заставляет ее прекратить работу. Прыжок или продолжение — вероятностные процессы, и после нескольких циклов в цитоплазме нарабатываются РНК всех генов второй половины исходной РНК.
Полный список белков коронавируса SARS-CoV-2 и их функции описаны в таблице 1. Аббревиатурой nsp обозначают неструктурные белки (от английского non-structural proteins). К ним относятся сервисные белки вируса вроде РНК-зависимой РНК-полимеразы и белков, обеспечивающих сборку вирусных частиц, а также nsp, выключающие собственный метаболизм клетки и мешающие ей позвать на помощь иммунную систему. Остальные белки составляют каркас вирусной частицы.
В геноме SARS-CoV-2 видны еще три последовательности, с которых, теоретически, могли бы считываться белки — ORF9c, ORF10 и ORF14. Но действительно ли они «работают», или это просто артефакт — неизвестно.
[I] M.-P. Egloff et al., «The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world», Proc. Natl. Acad. Sci., vol. 101, no. 11, pp. 3792–3796, Mar. 2004.
[II] Y. Wang et al., «Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis», J. Virol., vol. 89, no. 16, pp. 8416 LP-8427, Aug. 2015.
[III] Там же.
[IV] V. D. Menachery, K. Debbink, and R. S. Baric, «Coronavirus non-structural protein 16: Evasion, attenuation, and possible treatments», Virus Res., vol. 194, pp. 191–199, Dec. 2014.
[V] K. Siu et al., «Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC», FASEB J., vol. 33, no. 8, pp. 8865–8877, Aug. 2019.
[VI] Y. Konno et al., «SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further increased by a naturally occurring elongation variant», bioRxiv, p. 2020.05.11.088179, Jan. 2020.
[VII] D. Schoeman and B. C. Fielding, «Coronavirus envelope protein: current knowledge», Virol. J., vol. 16, no. 1, p. 69, Dec. 2019.
[VIII] «UniProtKB — P59637 (VEMP_CVHSA). Envelope small membrane protein», UniProt. [Online]. Available: https://www.uniprot.org/uniprot/P59637. [Accessed: 14-Aug-2020].
[XI] M. Frieman, B. Yount, M. Heise, S. A. Kopecky-Bromberg, P. Palese, and R. S. Baric, «Severe Acute Respiratory Syndrome Coronavirus ORF6 Antagonizes STAT1 Function by Sequestering Nuclear Import Factors on the Rough Endoplasmic Reticulum/Golgi Membrane», J. Virol., vol. 81, no. 18, pp. 9812–9824, Sep. 2007.
[X] J. K. Taylor et al., «Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference», J. Virol., vol. 89, no. 23, pp. 11820–11833, Dec. 2015.
[XI] S. R. Schaecher and A. Pekosz, «SARS Coronavirus Accessory Gene Expression and Function», in Molecular Biology of the SARS-Coronavirus, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 153–166.
[XII] C.-S. Shi et al., «SARS-Coronavirus Open Reading Frame-9b Suppresses Innate Immunity by Targeting Mitochondria and the MAVS/TRAF3/TRAF6 Signalosome», J. Immunol., vol. 193, no. 6, pp. 3080–3089, Sep. 2014.
[XIII] C.-S. Shi, N. R. Nabar, N.-N. Huang, and J. H. Kehrl, «SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes», Cell Death Discov., vol. 5, no. 1, p. 101, Dec. 2019.