Указанные частицы, названные коллоидными (от лат. слова "соllа"-клей), образуют мускульные ткани животных (миозин и коллаген), кожу их, серум крови (фибогрсн и др:), белок и желток яйца (альбумины и вителлин), жиры и белки молока (казеин и лактальбумин); хлебные злаки (растительный белок, крахмал и целлюлоза), шелк (фиброген) древесину (целлюлоза), краски, ткани для одежды, почвы; многие горные породы, минералы, драгоценные камни, жемчуг, перламутр, многие металлические сплавы и еще очень многое, о чем в короткой статье не расскажешь. По и этот краткий перечень достаточно сильно говорит о роли коллоидной химики в мировой науке.
Не нужно думать, что коллоиды - коллоидные частицы есть что-то новое и имеющее место только в лабораториях. Нет, это все наши старые знакомые, с которыми мы повседневно встречаемся. Вставая утром с постели, вы идете умываться и пользуетесь мылом, которое есть не что иное, как коллоидная система из солей жирных кислот; пена, которая получается при намыливании, тоже есть коллоидная система из коллоидных частиц жирных кислот, воды и воздуха, а самый процесс вымывания есть процесс коллоидный (объяснение- которого мы дадим в дальнейшем). После умывания, вы принимаетесь за чай или кофе; и то, и другое суть типичные коллоиды, распределенные в воде; они подчиняются всем правилам, установленным коллоидной химией для подобных частиц материи. Хлеб, 2 масло, сыр, колбаса и почти все питательные продукты, которые вы употребляете за чаем, состоят из тех же коллоидных частиц и поступают так, как и полагается всякой коллоидной системе. Отправляясь на работу; вы одеваетесь - в построенное из коллоидных частиц платье,- а- на работе обрабатываете металлы стальными резцами, состоящими из коллоидальной смеси железа и углерода, или точите изделия из- дерева, созданного из коллоида-целлюлозы, или пишете коллоидальными чернилами ко бумаге, сделанной из коллоидного материала. Можно итти дальше в описании рабочего дня человека и доказать, что он всюду сталкивается с коллоидами.
Из сказанного, однако, не следует заключать, что все в природе построено из коллоидных частиц. Нередко мы можем встретить физические тела-кристаллоиды, организованные непосредственно из молекул и атомов. Но роль их в жизни и быту; конечно, менее значительна, нежели роль коллоидов. VU.)
Как же отличить коллоиды от кристаллоидов? Коллоидохимки имеют для этого очень много методов, но наиболее старый способ - способ фильтрации растворов коллоидов через животные перепонки (пергамент и др.) остался и до сих пор очень надежным. При фильтровании крупные коллоидные частицы не проходят через мелкие поры перепонки, тогда как маленькие
молекулы кристаллоидного вещества легко через них проникают.
Казалось бы, микроскопом можно было бы обнаружить мельчайшие частицы. Но в том то и дело, что величина коллоидных частиц лежит как раз но средине между размерами молекул и атомов (которые для нас всегда останутся невидимыми) и величиною, обнаруживаемою наиболее совершенным микроскопом (0,001 мм). К счастью, коллоидная химия получила в свои руки могучее орудие - ультра-микроскоп, изобретенный немецким ученым Зигмонди. Принцип этого прибора можно понять 'по рис. 1. Стеклянный сосудик с раствором коллоида (напр. водной окиси железа или металлического золота или серебра) помещается на столик хорошего микроскопа и освещается сбоку узким пучком интенсивного света так, что часть раствора находится в фокусе собирательного стекла, поставленного между источником света и сосудиком. При этом в поле микроскопа мы увидим прекрасную картину: блестящие точки беспорядочно двигаются в темной массе раствора. Характер движения этих точек приближается к характеру общеизвестного броуновского движения. Разница здесь по существу - в броуновском движении мы видим самые движущиеся частицы, здесь же нами наблюдаются не коллоидные частицы, а дифракционные кольца, вызванные каждой из них.
Наконец, очень простой способ, воспроизводимый во всякой, даже домашней обстановке, заключается в реализации так называемого эффекта Типдаля. Если взять, напр. слабый раствор желатины (очень характерного коллоида) в воде и в темной комнате пропустить через него узкий пучек света, то лучи, встречая на своем пути сравнительно крупные коллоидные частицы, рассеиваются, почему мы ясно видим резко очерченную часть раствора, в которую проникает свет. Это явление подобно тому, как освещаются пылинки в воздухе в комнате с закрытыми ставнями, через щели которых проникают пучки света. И здесь коллоидное явление, т. к. пылинки (коль скоро они достаточно малы) могут быть названы коллоидными частицами. Одинаковый эффект имеет место и в случае растворов других коллоидов.