Великая Теорема Ферма - страница 132

Шрифт
Интервал

стр.

=1 в нашу формулу убеждаемся в том, что она дает правильный результат:

Σ(1) = ½·1·(1 + 1).

Следующий шаг в доказательстве по индукции заключается в том, чтобы показать, что если формула верна при каком-то значении n, то она должна быть верна и при n+1. Если

Σ(n) = ½·n(n + 1).

то

Σ(n + 1) = Σ(n) + (n + 1) = ½·n(n + 1) + (n + 1).

После преобразования членов в правой части получаем

Σ(n + 1) = ½·(n + 1)[(n + 1) + 1].

Важно отметить, что последняя формула «устроена» точно так же, как исходная формула с той лишь разницей, что там, где в исходной формуле стоит n, в новой формуле стоит n+1. Иначе говоря, если формула верна для n, то она должна быть верна и для n+1. Доказательство по индукции завершено.

Указания для дальнейшего чтения

При создании книги я опирался на многие книги и статьи. Помимо тех источников, которыми я пользовался при написании каждой главы, мною указаны материалы, которые могут представить интерес как для обычного читателя, так и для специалиста. В тех случаях, когда заголовок источника не позволяет судить о том, какое отношение данный источник имеет к теме книги, я счел возможным пояснить содержание источника одной или двумя фразами.

ГЛАВА 1

1 Bell Е. Т. The Last Problem. — Mathematical Association of America, 1990.

История классического периода поисков доказательства Великой теоремы Ферма в популярном изложении.

2 Ralph L. Pythagoras — A Short Account of His Life and Philosophy. — Krikos, 1961.

3 German P. Pythagoras — A Life. — Routledge and Paul Kegan, 1979.

4 Heath Th. A History of Greek Mathematics. Vol. 1, 2. — Dover, 1981.

5 Gardner M. Mathematical Magic Show. — Knopf, 1977.

Сборник математических задач-головоломок по материалам раздела «Математические игры» журнала «Scientific American».

6 Stollum H.-H. River meandering as a self-organization process // Science, 1996. Vol. 271, P. 1710–1713.

ГЛАВА 2

1 Mahoney M. The Mathematical Career of Pierre de Fermat. — Princeton University Press, 1994.

Подробное исследование, посвященное жизни и деятельности Пьера де Ферма.

2 Huffman P. Archimedes' Revenge. — Penguin, 1988.

Увлекательные рассказы о радостях и горестях математики.

ГЛАВА 3

1 Bell Е. Т. Men of Mathematics. — Simon and Schuster, 1937.

Биографии величайших гениев в истории математики: Эйлера, Ферма, Гаусса, Коши и Куммера.

2 Lloyd M., Dybas H. S. The periodical cicada problem // Evolution, 1966. Vol. 20, P. 466–505.

3 Osen L. M. Women in Mathematics. — MIT Press, 1994.

В основном, это нематематический текст с биографиями многих выдающихся математиков-женщин, в том числе Софи Жермен.

4 Peri Т. Math Equals: Biographies of Women Mathematicians + Related Activities. — Addison-Wesley, 1978.

5 Mozans H.J. Women in Science. — D.Appleton and Co, 1913.

6 Dahan D. A. Sophie Germain // Scientific American, December 1991.

Краткая статья о жизни и трудах Софи Жермен.

7 Edwards H. M. Fermat's Last Theorem. A Genetic Introduction to Algebraic Number Theory. — Springer, 1977.

Математическое обсуждение Великой теоремы Ферма, включающее подробное изложение некоторых ранних попыток доказательства.

8 Burton D. Elementary Number Theory. — Allyn & Bacon, 1980.

Различные сообщения О. Коши Парижской академии наук. In: С. R. Acad. Sci., Paris, 1847. Vol. 24, P. 407–416, 469–483.

9 Lame G. Note au sujet de la demonstration du theoreme de Fermat // C. R. Acad. Sci., Paris, 1847. Vol. 24, P. 352.

10 Kummer Е. Е. Extrait d'une lettre de M. Kummer a M. Liouville // J. Math. Pures et Appl., 1847. Vol. 12, P. 136. Также см. Kummer Е. Е. Collected Papers. Vol. 1 (Ed. by A. Weil) — Springer, 1975.

11 Lines M. Е. A Number for Your Thoughts. — Adam Hilger, 1986.

Факты и измышления о числах от Евклида до новейших компьютеров, в том числе чуть более подробное изложение гипотезы о точках.

ГЛАВА 4

1 Davis P. J., Chinn W. О. 3,1415 and All That. — Birkhäuser, 1985.

Истории о математике и математиках, в том числе глава о Пауле Вольфскеле.

2 Wells D. The Penguin Dictionary of Curious and Interesting Numbers. — Penguin, 1986.

3 Wells D. The Penguin Dictionary of Curious and Interesting Puzzles. — Penguin, 1982.


стр.

Похожие книги