Подобная же ситуация случилась в геносистематике — направлении, появившемся в 60-е годы и основанном на приложении молекулярных методов сопоставления степени сходства и различия в структуре ДНК и белков у разных видов. На бактериях было показано, что метод гибридизации ДНК позволяет количественно оценить степень сходства двух нитей ДНК и долю гомологичных последовательностей. В середине 70-х годов господствовало убеждение: что верно для бактерии, то верно для слона. Имплицитно основываясь на этом принципе, было выполнено множество работ по тотальной гибридизации препаратов ДНК на высших организмах (эукариотах) с целью сопоставить характер эволюции на уровне ДНК и морфологическом. Предполагалось, что любые изменения в ДНК имеют эволюционные последствия, и причем они первостепенны, важнее морфологических и иных. Однако, когда было выполнено множество опытов по оценке сходства тотальной ДНК, неожиданно стало ясно, что у эукариот до 90 % генома могут составлять не входящие в состав генов повторенные последовательности, количество и топография которых могут значительно варьировать даже у разных особей одного вида. И таким образом точный молекулярный метод тотальной гибридизации ДНК стал давать сбои в смысле правильности и надежности его использования для оценки филогенетического родства организмов (Антонов, 1983).
Сходные трудности выявились и при использовании белковой таксономии или сопоставлении аминокислотных последовательностей определенных белков. Концептуальный анализ методов геносистематики привел одного из инициаторов этого направления к справедливому выводу: "Без знания основных принципов эволюции ДНК мы никогда не сможем выяснить закономерности эволюции белков, а стало быть, и отличить факт от артефакта в белковой таксономии. Многообразие эволюции генотипов может проявляться в непредсказуемых отклонениях скорости накопления изменений в структуре индивидуальных белков в отдельных филетических линиях" (Антонов, 1983, с. 54).
Когда же эта трудность была осознана и точные методы были применены к сопоставлению заведомо консервативных фракций рибосомной РНК, то в лаборатории Карла Везе в США было сделано выдающееся открытие: выделение архебактерий в новое царство живых организмов (Woese, 1987). В дальнейшем К. Везе обосновал необходимость построения новой системы живых организмов на Земле. Он предложил концепцию новой высшей таксономической единицы (выше царства), названной "домен" (domain). Три основных домена таковы: Bacteria, Archaea и Eucarya. Каждый из доменов включает два или более царств (Woese, Kandler, Wheelis, 1990).
Важные эволюционные выводы сделаны и в области молекулярной филогенетики голосеменных и покрытосеменных растений, когда в ходе многолетних работ были накоплены и сопоставлены данные по скорости нуклеотидных замен не по одному, а сразу по нескольким рибосомным генам. Результаты молекулярной палеогенетики привели к выводу о монофилии двух основных групп растений и к тому, что их разделение произошло очень давно, около 350 млн. лет назад. По любым масштабам — задолго до того, как сформировались все ныне живущие и вымершие группы голосеменных растений. И тут возникло трудное несоответствие: классические палеоботаники не находят никаких следов появления покрытосемянных ранее чем 140 млн. лет назад. Предстоит решить: надо ли тщательно искать следы прародича покрытосемянных или же данные молекулярной филогенетики плохо отражают реальный ход эволюции и, как метафорически писал Любищев, некоторые деревья придется пустить на дрова? (Антонов, 2000). Достижение согласия между феносистематикой и геносистематикой — трудная, необходимая и реальная задача. Здесь важен диалог и осознание дилеммы правильности и точности.